Statistiek (WISB263)

 Sketch of Solutions for the Resit Exam

 Sketch of Solutions for the Resit Exam}

April 19, 2017
Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.
(The exam is an open-book exam: notes and book are allowed. The scientific calculator is allowed as well). The maximum number of points is 100 .
Points distribution: 32-20-26-22

1. Let $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample of n i.i.d. Poisson random variables with parameter λ.
(a) (8pt) Find the maximum likelihood for λ and its asymptotic sampling distribution.

Solution:

The \log-likelihood can be written as:

$$
\ell(\mathbf{X} ; \lambda)=-n \lambda+\left(\sum_{i=1}^{n} X_{i}\right) \log \lambda-\log \left(\prod_{i=1}^{n} X_{i}!\right)
$$

so that

$$
\dot{\ell}(\mathbf{X} ; \lambda)=-n+\frac{\sum_{i=1}^{n} X_{i}}{\lambda}
$$

and

$$
\ddot{\ell}(\mathbf{X} ; \lambda)=-\frac{\sum_{i=1}^{n} X_{i}}{\lambda^{2}}<0
$$

so that the MLE of λ is

$$
\hat{\lambda}=\frac{\sum_{i=1}^{n} X_{i}}{n}=\bar{X}_{n}
$$

By CLT,

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\lambda\right)}{\sqrt{\lambda}} \xrightarrow{\mathcal{D}} N(0,1)
$$

as $n \rightarrow \infty$. Therefore:

$$
\hat{\lambda} \approx N(\lambda, \lambda / n)
$$

(b) (8pt) Find the maximum likelihood estimator for the parameter $\mu=e^{-\lambda}$.

Solution:

By the invariance principle the MLE of μ is:

$$
\hat{\mu}=e^{-\hat{\lambda}}=e^{-\bar{X}_{n}}
$$

Suppose now that, rather than observing the actual values of the random variables X_{i}, we are just able to register whether they are null or positive. More precisely, only the events $X_{i}=0$ or $X_{i}>0$ for $i=1, \ldots, n$ are observed.
(c) (8pt) Find the maximum likelihood for λ for these new observations.

Solution:

Our sample now can be seen as n realizations of a Bernoulli variable Y with parameter $p=e^{\lambda}$, i.e. $\mathbb{P}(Y=0)=p$ and $\mathbb{P}(Y=1)=1-p$. Hence,

$$
\ell(\mathbf{X} ; \lambda)=\left(n-\sum_{i=1}^{n} Y_{i}\right) \log p+\sum_{i=1}^{n} Y_{i} \log (1-p)
$$

By standard calculations we have that the MLE of p is:

$$
\hat{p}=\left(n-\sum_{i=1}^{n} Y_{i}\right) / n
$$

Therefore, by the invariance principle, the MLE of λ is:

$$
\hat{\lambda}=-\log \left(\left(n-\sum_{i=1}^{n} Y_{i}\right) / n\right)
$$

that exists only for $n \neq \sum_{i=1}^{n} Y_{i}$, i.e. there is at least one null observation.
(d) (8 pt) When does the maximum likelihood estimator not exist? Assuming that the true value of λ is λ_{0}, compute the probability that the maximum likelihood estimator does not exist.

Solution:

The MLE exists for $n \neq \sum_{i=1}^{n} Y_{i}$. Therefore we have to calculate the probability:

$$
\mathbb{P}_{\lambda_{0}}\left(n=\sum_{i=1}^{n} Y_{i}\right)=\prod_{i=1}^{n} \mathbb{P}_{\lambda_{0}}\left(Y_{i}=1\right)=\left(1-e^{-\lambda_{0}}\right)^{n}
$$

2. Let $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample of n i.i.d. random variables with densities:

$$
f_{X}(x ; \theta)= \begin{cases}\frac{\theta^{3}}{2} x^{2} e^{-\theta x} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

with $\theta>0$ is an unknown parameter. Moreover, consider another random sample $\mathbf{Y}=\left\{Y_{1}, \ldots, Y_{n}\right\}$ of n i.i.d. random variables with densities:

$$
f_{Y}(y ; \mu)= \begin{cases}\frac{\mu^{3}}{2} y^{2} e^{-\mu y} & \text { if } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

with $\mu>0$ is another unknown parameter. We further assume that the two sample are independent (i.e. $X_{i} \perp Y_{j}$, for all $\left.i, j\right)$.
(a) [10pt] Find the Generalized Likelihood Ratio Test (GLRT) statistic for testing:

$$
\begin{cases}H_{0}: & \theta=\mu, \\ H_{1}: & \theta \neq \mu .\end{cases}
$$

Solution:

Let us denote with:

$$
\mathbf{V}=\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots Y_{n}\right\}
$$

the sample of size $2 n$ obtained pooling together the samples \mathbf{X} and \mathbf{Y}. The \log-likelihood corresponding to \mathbf{V} is:

$$
\operatorname{lik}(\mathbf{V} ; \theta, \mu)=\operatorname{lik}(\mathbf{X} ; \theta) \operatorname{lik}(\mathbf{Y} ; \mu)=\frac{\theta^{3 n} \mu^{3 n}}{2^{2 n}} e^{-\theta \sum_{i=1}^{n} X_{i}} e^{-\mu \sum_{i=1}^{n} Y_{i}} \prod_{i=1}^{n} X_{i}^{2} Y_{i}^{2}
$$

The GLRT can be written as:

$$
\Lambda(\mathbf{V})=\frac{\sup _{\theta_{0}} \operatorname{lik}\left(\mathbf{V} ; \theta_{0}, \theta_{0}\right)}{\sup _{\theta, \mu} \operatorname{lik}(\mathbf{X} ; \theta) \operatorname{lik}(\mathbf{Y} ; \mu)}=\frac{\operatorname{lik}\left(\mathbf{V} ; \hat{\theta}_{0}, \hat{\theta}_{0}\right)}{\operatorname{lik}(\mathbf{X} ; \hat{\theta}) \operatorname{lik}(\mathbf{Y} ; \hat{\mu})}
$$

where the hat denotes the MLE. Since

$$
\partial_{\theta} \ell(\mathbf{X} ; \theta)=\frac{3 n}{\theta}-\sum_{i=1}^{n} X_{i}
$$

and

$$
\partial_{\theta \theta}^{2} \ell(\mathbf{X} ; \theta)=-\frac{3 n}{\theta^{2}}<0
$$

the MLE of θ is $\hat{\theta}=\frac{3 n}{\sum_{i=1} X_{i}}$. Analogously, we have $\hat{\mu}=\frac{3 n}{\sum_{i=1} Y_{i}}$ and $\hat{\theta_{0}}=\frac{6 n}{\sum_{i=1} Y_{i}+\sum_{i=1}^{n} X_{i}}$. Hence,

$$
\Lambda(\mathbf{V})=\frac{\hat{\theta}_{0}^{6 n} \exp \left(-\hat{\theta}_{0} \sum_{i=1}^{n}\left(X_{i}+Y_{i}\right)\right)}{\hat{\theta}^{3 n} \hat{\mu}^{3 n} \exp \left(-\hat{\theta} \sum_{i=1}^{n} X_{i}-\hat{\mu} \sum_{i=1}^{n} Y_{i}\right)}=\frac{\hat{\theta}_{0}^{6 n}}{\hat{\theta}^{3 n} \hat{\mu}^{3 n}}
$$

Let us define now the following statistic:

$$
T:=\frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} X_{i}+\sum_{j=1}^{n} Y_{j}}
$$

(b) [10pt] Show that the GLRT rejects H_{0} if $T(1-T)<k$, for a suitable constant k.

Solution:

The GLRT statistics reject for $\Lambda(\mathbf{V})<c$, for a suitable constant c. Then

$$
\begin{aligned}
\Lambda(\mathbf{V}) & =\frac{\hat{\theta}_{0}^{6 n}}{\hat{\theta}^{3 n} \hat{\mu}^{3 n}}=\frac{\left(\frac{6 n}{\sum_{i=1} Y_{i}+\sum_{i=1}^{n} X_{i}}\right)^{6 n}}{\left(\frac{3 n}{\sum_{i=1}^{n} X_{i}}\right)^{3 n}\left(\frac{3 n}{\sum_{i=1}^{n} Y_{i}}\right)^{3 n}}=2^{6 n} \frac{1}{\left(\frac{\sum_{i=1}^{n}\left(Y_{i}+X_{i}\right)}{\sum_{i=1}^{n} X_{i}}\right)^{3 n}\left(\frac{\sum_{i=1}^{n}\left(Y_{i}+X_{i}\right)}{\sum_{i=1}^{n} Y_{i}}\right)^{3 n}} \\
& =2^{6 n} \frac{1}{\left(\frac{1}{T}\right)^{3 n}\left(\frac{1}{1-T}\right)^{3 n}}=2^{6 n}(T(1-T))^{3 n}
\end{aligned}
$$

so that we reject for $T(1-T)<k$, with $k=c^{1 / 3 n} / 4$.
3. A company wants to monitor the efficiency of two employees in completing an assigned task. For this reason, the performances of two employees (denoted by \mathbf{A} and \mathbf{B}) were measured by recording the times needed to complete the assigned tasks. Hence, the following two samples have been collected:

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{A}}=\{5.18,13.43,6.31,3.18,4.91,11.07\}, \\
& \mathbf{x}_{\mathbf{B}}=\{5.50,18.16,8.14,9.14,14.24,10.72\}
\end{aligned}
$$

where the duration of each task is measured in hours.
(a) [10pt] Perform a test at 10% of significance for testing the hypothesis that employee \mathbf{A} is faster than \mathbf{B}. Discuss critically the choice of the test used.

Solution:

Since we do not have any information on the distribution of the data, we can use the non-parametric MannWhitney for testing:

$$
\begin{cases}H_{0}: & F_{A}(x)=F_{B}(x), \\ H_{1}: & F_{A}(x) \geq F_{B}(x)\end{cases}
$$

We have that the sum of ranks are $T_{\boldsymbol{A}}=30$ and $T_{\boldsymbol{A}}=48$. The critical value for the one-tailed test is 31 , so that $T_{\boldsymbol{A}}<31$, we can reject then H_{0} at 10% of significance.

Suppose now that the time T needed by an employee for completing a task can be modeled by a continuous random variable with the following probability density function:

$$
f_{T}(t ; \theta)= \begin{cases}\frac{1}{2 \theta \sqrt{t}} e^{-\frac{\sqrt{t}}{\theta}} & \text { if } t>0 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

with $\theta>0$ an unknown parameter.
(b) [8pt] Given a sample $\mathbb{T}=\left\{T_{1}, \ldots, T_{n}\right\}$ of i.i.d random variables sampled from $f_{T}(t ; \theta)$, determine the maximum likelihood estimator of the probability $\mathbb{P}_{\theta}(T>7)$.
Solution:

$$
\begin{equation*}
\mathbb{P}_{\theta}(T>7)=\int_{7}^{\infty} \frac{1}{2 \theta \sqrt{t}} e^{-\frac{\sqrt{t}}{\theta}} d t=\int_{\sqrt{7} / \theta}^{\infty} e^{-y} d y=e^{-\sqrt{7} / \theta} \tag{2}
\end{equation*}
$$

Hence, by invariance principle, the MLE of $\mathbb{P}_{\theta}(T>7)$ is $e^{-\sqrt{7} / \hat{\theta}}$, where $\hat{\theta}$ is the MLE of the parameter θ. By standard calculations or by noting that $\sqrt{T} \sim \operatorname{Exp}(\theta)$, we can derive that the MLE of θ is:

$$
\begin{equation*}
\hat{\theta}=\frac{\sum_{i=1}^{n} \sqrt{T_{i}}}{n} \tag{3}
\end{equation*}
$$

so that the MLE of $\mathbb{P}_{\theta}(T>7)$ is $\mathbb{P}_{\hat{\theta}}(T>7)$.
(c) [8pt] Under the parametric model (1) for the random variable T and given the samples $\mathbf{x}_{\mathbf{A}}, \mathbf{x}_{\mathbf{B}}$, estimate the probability that the time needed by an employee for completing a task is larger than 7 hours, under the further assumption that 55% of the employees are similar to employee \mathbf{A} and 45% to employee \mathbf{B}.

Solution:

Using the samples $\mathbf{x}_{\mathbf{A}}$ and $\mathbf{x}_{\mathbf{B}}$, by (3) we find that following MLE estimates for the parameter θ :

$$
\begin{equation*}
\hat{\theta}_{\mathbf{A}} \simeq 2.63, \quad \hat{\theta}_{\mathbf{B}} \simeq 3.26 \tag{4}
\end{equation*}
$$

Therefore, by (2),(3) and (4), we have:

$$
0.55 \mathbb{P}_{\hat{\theta}_{\mathbf{A}}}(T>7)+0.45 \mathbb{P}_{\hat{\theta}_{\mathbf{B}}}(T>7) \simeq 0.42
$$

4. Let the independent random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ be such that we have the following linear model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2}\left(x_{i}-3.5\right)_{+}+\epsilon_{i}
$$

for $i=1, \ldots, n$, where ϵ_{i} are i.i.d. normal random variables such that $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ and with $(y)_{+}$we denoted the positive part of the real number y (i.e. $(y)_{+}:=\max (0, y)$). We collect the following sample of observations

$$
\mathbf{y}=\{1,2,4,5,4,3,1\}
$$

corresponding to the predictors:

$$
\mathbf{x}=\{0,1,2,3,4,5,6\}
$$

(a) $[8 \mathrm{pt}]$ If we rewrite the linear model using the usual matrix formalism

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

write down the design matrix \mathbf{X} of the linear model.

Solution:

$$
\mathbf{X}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 0 \\
1 & 3 & 0 \\
1 & 4 & 0.5 \\
1 & 5 & 1.5 \\
1 & 6 & 2.5
\end{array}\right)
$$

(b) $[6 \mathrm{pt}]$ Given that

$$
\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=\left(\begin{array}{ccc}
0.65 & -0.24 & 0.35 \\
-0.24 & 0.14 & -0.26 \\
0.35 & -0.26 & 0.65
\end{array}\right)
$$

estimate the model coefficients and write down the fitted model.

Solution:

Since the LSE can be written an:

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}
$$

we have:

$$
\hat{\boldsymbol{\beta}}=(1.27,1.54,-3.27)^{\top}
$$

and

$$
\hat{y}=1.27+1.54 x-3.27(x-3.5)_{+}
$$

(c) [8pt] Calculate the prediction of the fitted model at $x=4.5$. Assuming that the sum of squared residuals equals 7.8 , calculate a 95% confidence interval for this prediction.

Solution:

The prediction is:

$$
\hat{y}=1.27+1.54 \cdot 4.5-3.27(4.5-3.5)_{+}=4.93
$$

The estimated covariance matrix of the fitted coefficient is:

$$
\Sigma_{\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}}=s^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

with $s^{2}=\operatorname{RSS} /(7-3)=7.8 / 4=1.95$. Then
$\operatorname{Var} \hat{Y}=\operatorname{Var} \hat{\beta}_{0}+x^{2} \operatorname{Var} \hat{\beta}_{1}+(x-3.5)_{+}^{2} \operatorname{Var} \hat{\beta}_{2}+2 x \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)+2(x-3.5)_{+} \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{2}\right)+2 x(x-3.5)_{+} \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$
$=\Sigma_{1,1}+4.5^{2} \Sigma_{2,2}+\Sigma_{3,3}+9 \Sigma_{1,2}+2 \Sigma_{1,3}+9 \Sigma_{2,3}$
Therefore a 95% CI for the prediction is:

$$
4.93 \pm t_{4,0.024} \sqrt{\operatorname{Var} \hat{Y}}=4.93 \pm 4.47
$$

