
Statistiek (WISB263)

Sketch of Solutions for the Resit Exam
April 19, 2017

Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.

(The exam is an open–book exam: notes and book are allowed. The scientific calculator is allowed as well).
The maximum number of points is 100.
Points distribution: 32-20-26-22

1. Let X = {X1, . . . ,Xn} be a random sample of n i.i.d. Poisson random variables with parameter λ.

(a) (8pt) Find the maximum likelihood for λ and its asymptotic sampling distribution.
Solution:
The log–likelihood can be written as:

`(X;λ) = −nλ + (
n

∑
i=1
Xi) logλ − log(

n

∏
i=1
Xi!)

so that

˙̀(X;λ) = −n +
∑
n
i=1Xi

λ

and

῭(X;λ) = −
∑
n
i=1Xi

λ2
< 0

so that the MLE of λ is

λ̂ =
∑
n
i=1Xi

n
=Xn

By CLT,
√
n(Xn − λ)
√
λ

D
Ð→ N(0,1)

as n→∞. Therefore:
λ̂ ≈ N(λ,λ/n)

(b) (8pt) Find the maximum likelihood estimator for the parameter µ = e−λ.
Solution:
By the invariance principle the MLE of µ is:

µ̂ = e−λ̂ = e−Xn

Suppose now that, rather than observing the actual values of the random variables Xi, we are just able to
register whether they are null or positive. More precisely, only the events Xi = 0 or Xi > 0 for i = 1, . . . , n are
observed.

(c) (8pt) Find the maximum likelihood for λ for these new observations.
Solution:
Our sample now can be seen as n realizations of a Bernoulli variable Y with parameter p = eλ, i.e.
P(Y = 0) = p and P(Y = 1) = 1 − p. Hence,

`(X;λ) = (n −
n

∑
i=1
Yi) log p +

n

∑
i=1
Yi log(1 − p)

By standard calculations we have that the MLE of p is:

p̂ = (n −
n

∑
i=1
Yi)/n



Therefore, by the invariance principle, the MLE of λ is:

λ̂ = − log((n −
n

∑
i=1
Yi)/n)

that exists only for n ≠ ∑
n
i=1 Yi, i.e. there is at least one null observation.

(d) (8pt) When does the maximum likelihood estimator not exist? Assuming that the true value of λ is λ0,
compute the probability that the maximum likelihood estimator does not exist.
Solution:
The MLE exists for n ≠ ∑

n
i=1 Yi. Therefore we have to calculate the probability:

Pλ0 (n =
n

∑
i=1
Yi) =

n

∏
i=1

Pλ0(Yi = 1) = (1 − e−λ0)
n

2. Let X = {X1, . . . ,Xn} be a random sample of n i.i.d. random variables with densities:

fX(x; θ) = {
θ3

2
x2e−θ x if x > 0,

0 otherwise

with θ > 0 is an unknown parameter. Moreover, consider another random sample Y = {Y1, . . . , Yn} of n i.i.d.
random variables with densities:

fY (y;µ) = {
µ3

2
y2e−µy if y > 0,

0 otherwise

with µ > 0 is another unknown parameter. We further assume that the two sample are independent (i.e.
Xi ⊥ Yj , for all i, j).

(a) [10pt] Find the Generalized Likelihood Ratio Test (GLRT) statistic for testing:

{
H0 ∶ θ = µ,
H1 ∶ θ ≠ µ.

Solution:
Let us denote with:

V = {X1, . . . ,Xn, Y1, . . . Yn}

the sample of size 2n obtained pooling together the samples X and Y. The log–likelihood corresponding to
V is:

lik(V; θ, µ) = lik(X; θ)lik(Y;µ) =
θ3nµ3n

22n
e−θ∑

n
i=1Xie−µ∑

n
i=1 Yi

n

∏
i=1
X2
i Y

2
i

The GLRT can be written as:

Λ(V) =
supθ0 lik(V; θ0, θ0)

supθ,µ lik(X; θ)lik(Y;µ)
=

lik(V; θ̂0, θ̂0)

lik(X; θ̂) lik(Y; µ̂)

where the hat denotes the MLE. Since

∂θ`(X; θ) =
3n

θ
−

n

∑
i=1
Xi

and

∂2θθ`(X; θ) = −
3n

θ2
< 0

the MLE of θ is θ̂ = 3n
∑i=1Xi . Analogously, we have µ̂ = 3n

∑i=1 Yi and θ̂0 =
6n

∑i=1 Yi+∑ni=1Xi . Hence,

Λ(V) =
θ̂6n0 exp(−θ̂0∑

n
i=1(Xi + Yi))

θ̂3nµ̂3n exp(−θ̂∑
n
i=1Xi − µ̂∑

n
i=1 Yi)

=
θ̂6n0

θ̂3nµ̂3n
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Let us define now the following statistic:

T ∶=
∑
n
i=1Xi

∑
n
i=1Xi +∑

n
j=1 Yj

(b) [10pt] Show that the GLRT rejects H0 if T (1 − T ) < k, for a suitable constant k.

Solution:
The GLRT statistics reject for Λ(V) < c, for a suitable constant c. Then

Λ(V) =
θ̂6n0

θ̂3nµ̂3n
=
( 6n
∑i=1 Yi+∑ni=1Xi )

6n

( 3n
∑ni=1Xi )

3n
( 3n
∑ni=1 Yi )

3n
= 26n

1

(
∑ni=1(Yi+Xi)
∑ni=1Xi )

3n
(
∑ni=1(Yi+Xi)
∑ni=1 Yi )

3n

= 26n
1

( 1
T
)
3n
( 1
1−T )

3n
= 26n (T (1 − T ))

3n

so that we reject for T (1 − T ) < k, with k = c1/3n/4.

3. A company wants to monitor the efficiency of two employees in completing an assigned task. For this reason,
the performances of two employees (denoted by A and B) were measured by recording the times needed to
complete the assigned tasks. Hence, the following two samples have been collected:

xA = {5.18,13.43,6.31,3.18,4.91,11.07},

xB = {5.50,18.16,8.14,9.14,14.24,10.72}

where the duration of each task is measured in hours.

(a) [10pt] Perform a test at 10% of significance for testing the hypothesis that employee A is faster than B.
Discuss critically the choice of the test used.

Solution:
Since we do not have any information on the distribution of the data, we can use the non–parametric Mann–
Whitney for testing:

{
H0 ∶ FA(x) = FB(x), ∀x
H1 ∶ FA(x) ≥ FB(x)

We have that the sum of ranks are TA = 30 and TA = 48. The critical value for the one–tailed test is 31, so
that TA < 31, we can reject then H0 at 10% of significance.

Suppose now that the time T needed by an employee for completing a task can be modeled by a continuous
random variable with the following probability density function:

fT (t; θ) =

⎧⎪⎪
⎨
⎪⎪⎩

1

2θ
√
t
e−

√
t
θ if t > 0,

0 otherwise
(1)

with θ > 0 an unknown parameter.

(b) [8pt] Given a sample T = {T1, . . . , Tn} of i.i.d random variables sampled from fT (t; θ), determine the
maximum likelihood estimator of the probability Pθ(T > 7).
Solution:

Pθ(T > 7) = ∫
∞

7

1

2θ
√
t
e−

√
t
θ dt = ∫

∞
√
7/θ

e−ydy = e−
√
7/θ (2)
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Hence, by invariance principle, the MLE of Pθ(T > 7) is e−
√
7/θ̂, where θ̂ is the MLE of the parameter θ.

By standard calculations or by noting that
√
T ∼ Exp(θ), we can derive that the MLE of θ is:

θ̂ =
∑
n
i=1
√
Ti

n
(3)

so that the MLE of Pθ(T > 7) is Pθ̂(T > 7).

(c) [8pt] Under the parametric model (1) for the random variable T and given the samples xA, xB, estimate
the probability that the time needed by an employee for completing a task is larger than 7 hours, under
the further assumption that 55% of the employees are similar to employee A and 45% to employee B.

Solution:
Using the samples xA and xB, by (3) we find that following MLE estimates for the parameter θ:

θ̂A ≃ 2.63, θ̂B ≃ 3.26 (4)

Therefore, by (2),(3) and (4), we have:

0.55Pθ̂A(T > 7) + 0.45Pθ̂B(T > 7) ≃ 0.42

4. Let the independent random variables Y1, Y2, . . . , Yn be such that we have the following linear model:

Yi = β0 + β1xi + β2(xi − 3.5)+ + εi

for i = 1, . . . , n, where εi are i.i.d. normal random variables such that εi ∼ N(0, σ
2) and with (y)+ we denoted

the positive part of the real number y (i.e. (y)+ ∶= max(0, y)). We collect the following sample of observations

y = {1,2,4,5,4,3,1}

corresponding to the predictors:
x = {0,1,2,3,4,5,6}

(a) [8pt] If we rewrite the linear model using the usual matrix formalism

Y =Xβ + ε

write down the design matrix X of the linear model.
Solution:

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0.5
1 5 1.5
1 6 2.5

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(b) [6pt] Given that

(X⊺X)−1 =
⎛
⎜
⎝

0.65 −0.24 0.35
−0.24 0.14 −0.26
0.35 −0.26 0.65

⎞
⎟
⎠

estimate the model coefficients and write down the fitted model.
Solution:
Since the LSE can be written an:

β̂ = (X⊺X)−1X⊺Y
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we have:
β̂ = (1.27,1.54,−3.27)⊺

and
ŷ = 1.27 + 1.54x − 3.27 (x − 3.5)+

(c) [8pt] Calculate the prediction of the fitted model at x = 4.5. Assuming that the sum of squared residuals
equals 7.8, calculate a 95% confidence interval for this prediction.
Solution:
The prediction is:

ŷ = 1.27 + 1.54 ⋅ 4.5 − 3.27 (4.5 − 3.5)+ = 4.93

The estimated covariance matrix of the fitted coefficient is:

Σβ̂,β̂ = s2(X⊺X)−1

with s2 = RSS/(7 − 3) = 7.8/4 = 1.95. Then

VarŶ = Varβ̂0 + x
2Varβ̂1 + (x − 3.5)2+Varβ̂2 + 2xCov(β̂0, β̂1) + 2(x − 3.5)+Cov(β̂0, β̂2) + 2x(x − 3.5)+Cov(β̂1, β̂2)

= Σ1,1 + 4.52Σ2,2 +Σ3,3 + 9Σ1,2 + 2Σ1,3 + 9Σ2,3

Therefore a 95% CI for the prediction is:

4.93 ± t4,0.024

√

VarŶ = 4.93 ± 4.47
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