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Introduction

In these lecture notes we present an introduction to the field of (Mathemat-
ical) Logic.

Mathematical knowledge is organized in the form of statements (proposi-
tions, theorems, but also: conjectures, questions) and Logic aims to analyze
at least two aspects of these statements: they can be true or false (that is
to say: they have a relationship with reality), and they can sometimes be
proved.

In order to study these aspects in a precise way, we restrict our attention
to a kind of idealized, abstract statements which are just strings of symbols
of a certain alphabet: the sentences of a formal language. We can then
define what it means, for such an abstract sentence, that it is ‘true’ in a
particular interpretation (for example, the sentence “2 is a square” is true
in R but false in N). This definition is due to Alfred Tarski. We treat this
in chapter 2, Models.

An abstract proof, then, is a collection of sentences which is structured in
such a way that every sentence which appears in it, is either an assumption
or can be seen as a direct consequence of sentences which have appeared
‘before’ in the proof; we use the picture of a tree, and our proofs are so-
called natural deduction trees. Every proof has a unique conclusion, which
is a sentence. The theory of proofs takes up chapter 3, Proofs. We prove the
most fundamental theorem of Logic, Gödel’s Completeness Theorem, in this
chapter. This theorem says, that a sentence is always true (in all possible
interpretations) precisely if it is the conclusion of such a proof tree.

But before we can even start, we must broaden our idea of the world of
sets. Chapter 1, Sets, reviews in an informal way some topics that are im-
portant in many areas of Mathematics, such as: cardinalities, Zorn’s Lemma
and the Axiom of Choice, well-orders and transfinite induction.

However, once we know what a formal theory is (a collection of sentences
in the sense of Chapters 2 and 3), we can also look at the formal theory of
sets. In Chapter 4, Sets Again, we explain how the theory of sets can be set
up with axioms. We hope to convince you that these axioms are sufficient for
‘doing mathematics’; but actually we cannot (in the scope of these lecture
notes) even scratch the surface of this vast topic.

Acknowledgement: we are indebted to Benno van den Berg, Nicola Gam-
bino, Jeroen Goudsmit, Fabio Pasquali, Marcel de Reus, Sebastiaan Terwijn,
Andreas Weiermann and Ittay Weiss for pointing out typos and inaccuracies
in earlier versions of these notes. We have corrected them. Needless to say,
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Chapter 1

Sets

This chapter intends to further develop your understanding of sets.

The first mathematician who thought about sets, and realized that it
makes sense to organize mathematical knowledge using the concept of ‘set’,
was Georg Cantor (1845–1918). His name will appear at several places in
these lecture notes. For biographical information on Cantor, whose genius
did not receive proper recognition in his time and who had a troubled life,
see [6] or the sketch in [15].

The first triumph of Cantor’s theory of sets was that he could show that
there are ‘different kinds of infinity’: although the set of rational numbers
and the set of irrational numbers are both infinite, there are ‘more’ irrational
numbers than rational ones.

An important part of this chapter is about how to calculate with these
different kinds of infinity. It turns out that in order to set up the theory, it is
necessary to adopt a principle which was first formulated by Ernst Zermelo
in 1904: the Axiom of Choice. In sections 1.2 and 1.2.1, we introduce you to
how to work with this axiom and with a useful equivalent principle: Zorn’s
Lemma.

Then, in section 1.3, we develop another concept which originates with
Cantor: that of a well-order. Thanks to this idea, we can extend proofs by
induction to arbitrarily ‘large’ sets.

Finally, in section 1.4, which is an appendix to this chapter, precise
proofs are given of the equivalence between various versions of the Axiom
of Choice.

So let us start. Instead of trying to formulate what a ‘set’ is, we assume
that you already have some idea of it. A set has ‘elements’. If X is a set
and x is an element of X, we write x ∈ X. Think of X as a property, and

1



2 CHAPTER 1. SETS

the elements of X as the things having property X.

A set is completely determined by its elements. That means: suppose
the sets X and Y have the same elements. So for all x ∈ X we have x ∈ Y ,
and vice versa. Then we consider X and Y to be the same set: X = Y .

A set X is called a subset of a set Y , if every element of X is also an element
of Y . We write: X ⊂ Y (or X ⊆ Y if we want to stress that X and Y might
be equal). For example, if x ∈ X then there is a subset {x} of X, which has
only the one element x.

We also assume that you have an idea of what a function between sets is: a
function f from X to Y (notation f : X → Y ) gives us for each element x
of X a unique element f(x) of Y , the value of the function f at x.

A function f : X → Y is completely determined by its values. That means:
if f and g are functions from X to Y and for every x ∈ X we have f(x) =
g(x), then f and g are the same function: f = g.

The following examples of sets are familiar to you: the empty set ∅, which
has no elements, the set N = {0, 1, . . .} of natural numbers, and likewise the
sets Z, Q and R of integers, rational numbers and real numbers, respectively.
By the way, it was Cantor who introduced the notation R!

You see that we have started to use the curly bracket notation {} for writing
sets: we specify a set by giving its elements, either by listing them all (using
dots if necessary, as in {0, 1, 2, . . .}), or by giving the property that the
elements of the set must satisfy, as in for example

R>0 = {x |x ∈ R and x > 0}

The following are examples of functions: for every set X, there is the empty
function from ∅ to X, and the identity function from X to X (this function,
say IX : X → X, is such that IX(x) = x for every x ∈ X). Given functions
f : X → Y and g : Y → Z there is the composition g ◦ f : X → Z (or
gf : X → Z), which is defined by: g ◦ f(x) = g(f(x)) for all x ∈ X.

In general, if X and Y are sets, and for every element x of X a subset Yx
of Y is given such that Yx has exactly one element, then there is a (unique)
function f : X → Y with the property that f(x) ∈ Yx for every x ∈ X.

Let us recall some more definitions.

A function f : X → Y is called injective (or 1-1) if for each x, y ∈ X it holds
that f(x) = f(y) implies x = y.
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The function f is surjective (or onto) if every y ∈ Y is equal to f(x) for
some x ∈ X.

And f is called bijective if there is a function g : Y → X such that for all
x ∈ X and all y ∈ Y the equalities g(f(x)) = x and f(g(y)) = y hold.
Given f , the function g is unique if it exists, and is called the inverse of f ,
notation: f−1.

If f : X → Y is a function, there is the subset of Y which consists of all
elements of the form f(x) for x ∈ X. This subset is called the image of the
function f . Likewise, if A is a subset of Y , there is the subset of X which
consists of all elements x ∈ X such that f(x) ∈ A. This subset is sometimes
denoted by f−1(A), and called the inverse image of A under f .

Exercise 1 Prove:

a) A function f : X → Y is bijective if and only if it is both injective and
surjective;

b) a function f : X → Y is surjective if and only if the image of f is equal
to Y ;

c) if f : X → Y is injective, then f is a bijective function from X to the
image of f .

Let us also recall the following basic operations on sets:

The union X ∪ Y of X and Y is the set {z | z ∈ X or z ∈ Y }.

The intersection X ∩ Y is the set {z | z ∈ X and z ∈ Y }.

If X ⊆ Y , the complement of X in Y , written as Y −X, is the set of those
elements of Y that are not elements of X (in the literature, one also finds
the notation Y \X).

The sets X and Y are disjoint if they have no elements in common. This is
equivalent to: X ∩ Y = ∅.

1.1 Cardinal Numbers

A setX is finite if for some n ∈ N there is a bijective function f : {1, . . . , n} →
X (for n = 0, the set {1, . . . , n} is empty). This means that X has exactly
n elements; we call n the cardinality of X and write |X| for this number (in
the literature, the notation ♯(X) is also sometimes used). A set which is not
finite is called infinite.
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Exercise 2 For an arbitrary set X there is at most one n such that |X| = n.

We introduce the following notations for (constructions on) sets:

• We assume that given sets X and Y , for every x ∈ X and y ∈ Y the
ordered pair (x, y) is given, and that we have a set X × Y , given as

X × Y = {(x, y) |x ∈ X, y ∈ Y }

which we call the Cartesian product of X and Y ; there are projection
functions πX : X×Y → X and πY : X×Y → Y sending the pair (x, y)
to x and to y, respectively; whenever we have functions f : Z → X
and g : Z → Y there is a unique function h : Z → X × Y (sending
z ∈ Z to the pair (f(z), g(z))) with the property that πXh = f and
πY h = g;

• X + Y is the disjoint sum of X and Y , constructed as

{(0.x) |x ∈ X} ∪ {(1, y) | y ∈ Y }

• Y X is the set of functions f : X → Y ;

• P(X), the power set of X, is the set of all subsets of X.

Exercise 3 For finite sets X,Y :

a) |X × Y | = |X| × |Y |

b) |X + Y | = |X| + |Y |

c) |Y X | = |Y ||X|

d) |P(X)| = 2|X|

For arbitrary sets X and Y we write X ∼ Y to indicate that there is a
bijective function from X to Y .

Exercise 4 Prove the following facts about ∼:

a) X ∼ X;

b) if X ∼ Y , then Y ∼ X;

c) if X ∼ Y and Y ∼ Z, then X ∼ Z.
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We write X ≤ Y if there is an injective function from X to Y .
Since every bijective function is injective, X ∼ Y implies X ≤ Y . Notice

also that if X ′ ∼ X and Y ∼ Y ′, then X ′ ≤ Y ′ whenever X ≤ Y .

The following theorem is, in the literature, sometimes called the “Schröder-
Bernstein Theorem”, sometimes the “Cantor-Bernstein Theorem”.

Theorem 1.1.1 (Schröder-Cantor-Bernstein) If X ≤ Y and Y ≤ X,
then X ∼ Y .

Proof. First notice that we may assume that X and Y are disjoint, for
otherwise we can replace them by disjoint sets X ′ and Y ′ such that X ∼ X ′

and Y ∼ Y ′ (for example, as in the construction of the disjoint sum).
Suppose f : X → Y and g : Y → X are two 1-1 functions. We have to

indicate a bijective function h : X → Y .
To this end, we construct a “graph” as follows. The vertices (or nodes)

of the graph are the elements of the union X ∪ Y . We shall denote these
elements by just x or y (recall that X and Y are assumed disjoint).

For x ∈ X, there is an edge (labelled f) from x to f(x), and for y ∈ Y
there is an edge (labelled g) from y to g(y). The whole graph decomposes
into connected components. These components can have the following forms:

Type 1 x0
f→ y0

g→ x1
f→ y1 → . . .

Type 2 y0
g→ x0

f→ y1
g→ x1 → . . .

Type 3 . . .→ x−1
f→ y−1

g→ x0
f→ y0 → . . .

Type 4 x0
f→ y0 → . . .→ yn

g→ x0

Here, in Type 1, it is assumed that x0 is not in the image of g; in Type 2,
the element y0 is not in the image of f . Types 1 and 2 extend to the right
infinitely. Type 3 extends to both left and right infinitely; Type 4 is finite.
Now clearly, within each type there is a bijective correspondence between
the x’s and the y’s in the type; together, these form a bijective function
from X to Y .

We extend the notation |X| to arbitrary (not necessarily finite) sets X and
use it as follows:

We say |X| = |Y | if X ∼ Y ;

the notation |X| ≤ |Y | means X ≤ Y ;

and we write |X| < |Y | if |X| ≤ |Y | but not |X| = |Y | (equivalently,
by Theorem 1.1.1: |X| ≤ |Y | but not |Y | ≤ |X|).
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When |X| < |Y | we think of X as “smaller than” Y ; similarly, if |X| ≤ |Y |
we think of X as “at most as large as” Y .

Definition 1.1.2 For a set X, we refer to |X| as the cardinality of X. An
object of the form |X| is called a cardinal number.

We regard every n ∈ N as a cardinal number, namely n = |{1, . . . , n}|.
Note that this also means 0 = |∅|. Note also, that n ≤ m as cardinal
numbers if and only if n ≤ m in the usual ordering of N. There are also
infinite cardinal numbers, such as |N|.

Definition 1.1.3 We have the following operations on cardinal numbers:

• |X| × |Y | = |X × Y |

• |X| + |Y | = |X + Y |

• |Y ||X| = |Y X |

Exercise 5 Is this a correct definition? What do you have to check?

Exercise 6 Prove that the operations +, × and (−)(−) for cardinal numbers
satisfy the following usual rules of arithmetic:

a) (|X| + |Y |) × |Z| = (|X| × |Z|) + (|Y | × |Z|)

b) |X||Y |+|Z| = (|X||Y |) × (|X||Z|)

c) (|X| × |Y |)|Z| = (|X||Z|) × (|Y ||Z|)

Formulate and prove some more of these rules yourself.

Now let us consider the cardinalities of power sets.

There is a bijective function from P(X) to {0, 1}X : with a subset S ⊆ X
we associate the function χS : X → {0, 1} (the characteristic function of S),
defined by:

χS(x) =

{
1 if x ∈ S
0 if x 6∈ S

Conversely, every function χ : X → {0, 1} is of the form χS for a unique
subset S of X, namely S = {x ∈ X |χ(x) = 1}.

Therefore, |P(X)| = |{0, 1}X | = 2|X|.

Proposition 1.1.4
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i) |N| = |N| + |N|

ii) |N| = |N| × |N|

iii) |N| = |Z| = |Q|

Proof. We indicate only a proof of ii), leaving the other statements as
exercises. A bijection f : N → N × N is indicated in the following diagram:

(0, 3) . . .

(0, 2)

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
(1, 2)

ccGGGGGGGG

. . .

(0, 1)

))RRRRRRRRRRRRRRRRR (1, 1)

bbFFFFFFFFF

(2, 1)

bbFFFFFFFFF

...

(0, 0) // (1, 0)

bbFFFFFFFFF

(2, 0)

bbFFFFFFFFF

(3, 0)

bbFFFFFFFFF

The path obtained by following the arrows indicates the successive values of
f . Thus f(0) = (0, 0), f(1) = (1, 0), etc.

Exercise 7 Find a formula for the inverse of the function f indicated in the
proof above. Give also proofs of the other statements of proposition 1.1.4.

Proposition 1.1.5 (Cantor) For every set A we have the strict inequality

|A| < 2|A|

In other words, there is an injective function A → P(A) but there is no
bijective function between these sets.

Notice, that you already know Proposition 1.1.5 for finite sets; indeed, n <
2n is true for every natural number n.

Proof. It is easy to construct the required injective function f : A→ P(A).
Just define f(a) = {a} (the singleton set whose only element is a).

For the statement in the proposition, we shall show something stronger
than required, namely that there cannot be any surjective function from A
to P(A). The argument we use is known as the Cantor diagonal argument.
Suppose that

s : A→ P(A)
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is surjective. We can construct a subset D of A by putting

D = {a ∈ A | a 6∈ s(a)}

Since s is assumed surjective, there must be some a0 ∈ A with s(a0) = D.
But now the simple question ‘does a0 belong to D?’ brings us in trouble:
we have

a0 ∈ D iff a0 6∈ s(a0) (by definition of D)
iff a0 6∈ D (since D = s(a0))

Thus, our assumption that such a surjective s exists, leads to a contradiction.

Example. This example illustrates the proof of 1.1.5 and explains the
term ‘diagonal argument’. In order to prove that |N| < 2|N|, suppose for
a contradiction that the set {0, 1}N of infinite sequences of 0-s and 1-s is
in bijective correspondence with N. Then we can list this set as a0, a1, . . .,
where ai is the sequence ai0, ai1, . . .. Now consider:

a00

BB
BB
a01 a02 · · ·

a10 a11

BB
BB
a12 · · ·

a20 a21 a22

<<
<<

<<
· · ·

...
...

...

Clearly, the sequence

(1 − a00), (1 − a11), (1 − a22), . . .

does not appear in the list, contradicting the assumption that we were listing
all 01-sequences. You should convince yourself, that this pictorial argument
is essentially the same as the more general one of the proof of 1.1.5.

Proposition 1.1.5 has an important consequence: there are infinitely many
infinite cardinal numbers. In fact, if we write |N| = ω as is customary, we
have

ω < 2ω < 2(2ω) < · · ·
Let us try to determine the position of some familiar sets from analysis from
the point of view of their cardinal numbers. We have already seen that the
cardinal numbers of N, Q and Z are the same (Proposition 1.1.4). These are
so-called countable sets. We make the following definition:
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Definition 1.1.6 A set X is called countable if X is empty or there is a
surjective function N → X.

So, if a non-empty set X is countable, one can ‘enumerate’ all its elements
as

X = {x0, x1, x2, . . .}
(but repetitions may occur).

Exercise 8 i) Show that if f : N → X is surjective, there is a function
g : X → N such that f(g(x)) = x for all x ∈ X. How do you define
g(x)? Conclude that |X| ≤ |N|.

ii) Show that if X is countable then X is finite or |X| = ω.

iii) Show that if X and Y are countable, so are X × Y and X + Y .

iv) Show that every subset of a countable set is countable.

An example of an uncountable set is {0, 1}N, as follows from proposition 1.1.5.

What about the real numbers? There are several ways to determine the
cardinality of R. Our approach uses the so-called Cantor set, a subset C
of R that was defined by Cantor in order to prove that R is not countable.
However, the set C has a lot of independent interest and is also often used
in topology. It is constructed as the intersection

C =
⋂

n∈N

Cn

of an infinite sequence of smaller and smaller subsets of R,

R ⊃ C0 ⊃ C1 ⊃ C2 ⊃ · · ·

Each Ci is a union of closed intervals. C0 is the interval [0, 1], and Cn+1 is
obtained from Cn by “cutting out the middle third” of each of the intervals
which make up Cn:

C1 = [0, 1
3 ] ∪ [23 , 1]

C2 = [0, 1
9 ] ∪ [29 ,

1
3 ] ∪ [23 ,

7
9 ] ∪ [89 , 1]

etc.
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Thus a point p of C is uniquely determined by specifying for each n the
interval of Cn to which p belongs. We can code this specification as a
sequence of 0’s and 1’s where 0 means “left” and 1 means “right” (for each
subinterval of Cn, there are exactly two subintervals of Cn+1 contained in
it). For example,

p = 010 · · ·
is the point which lies in the left part [0, 1

3 ] of C1, then in the right part [29 ,
1
3 ]

of the two intervals of C2 contained in [0, 1
3 ], then in the left part [ 6

27 ,
7
27 ] at

the next stage, etcetera. Since the length of the intervals tends to zero, the
sequence p defines a unique element of C. In this way, we obtain a bijective
function

ϕ : {0, 1}N → C

Thus,
|C| = 2ω

Although C is just a subset of R, the two sets are equally large in some
sense:

Proposition 1.1.7 |C| = |R|.

Proof. By 1.1.1, it suffices to prove that |C| ≤ |R| and |R| ≤ |C|. Since C
is a subset of R we obviously have

|C| ≤ |R|

There are many ways to prove the converse inequality. For example, each
real number x is determined by the set of rational numbers which are < x.
This defines an injective function

ψ : R → P(Q)

Since |Q| = |N| hence |P(Q)| = 2ω, we see that

|R| ≤ 2ω

Since |C| = 2ω, we are done.

Exercise 9 Show that 2ω × 2ω = 2ω. Conclude that the field of complex
numbers has the same cardinality as R.

Exercise 10 Prove that for a subset A of R, if |A| = ω then |R −A| = 2ω.
Conclude that C ∼ P , where P is the set of irrational numbers.

Hint: use that R ∼ {0, 1}N
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Exercise 11 Prove that |RN| = |R|.

Exercise 12 Let Cont denote the set of continuous functions R → R.

a) Show that the function Cont → RQ, which sends a continuous function
f : R → R to its restriction to Q, is injective;

b) Prove that |Cont| = |R|.

1.1.1 The Continuum Hypothesis

Suppose A is a subset of R such that N ⊆ A ⊆ R. We know then, that

ω ≤ |A| ≤ 2ω = |R|
and at least one of the inequalities must be strict because ω < 2ω. We may
ask ourselves: can it happen that both inequalities are strict? Is there a
subset A of R such that

ω < |A| < 2ω

holds?
This problem was raised by Cantor. Unable to find such a set, he formu-

lated the so-called Continuum Hypothesis, which states that every subset of
R which contains N, is either countable or has cardinality 2ω.

It cannot be decided on the basis of the axioms of Set Theory (see Chap-
ter 4) whether the Continuum Hypothesis (CH) is true or false. Two famous
results of Logic show that, on the one hand, CH does not contradict these
axioms (Gödel, 1940;[11]), and on the other, that its negation doesn’t either
(Cohen, 1963;[2]). This means: one cannot derive a contradiction by logical
reasoning on the basis of CH and the axioms of Set Theory, but it is also
impossible to prove CH from these axioms.

Kurt Gödel was already famous for his “Incompleteness Theorems” when
he proved the “Consistency of the Continuum Hypothesis”. Paul Cohen’s
result, usually referred to as “Independence of the Continuum Hypothesis”,
solved a problem posed by Hilbert in 1900, and won him the Fields Medal
in 1966. The Fields Medal is, in Mathematics, what the Nobel Prize is for
Physics and other sciences. Cohen’s is the only Fields Medal ever awarded
for work in Logic.

1.2 The Axiom of Choice

An axiom in mathematics is a statement or a principle of reasoning that
is simply assumed, because it is so basic that it cannot be proved. An
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example of such an axiom is the principle of mathematical induction for
natural numbers (see also the statements just before Proposition 1.3.4).

Of course, in general it is far from easy to see that a principle ‘cannot
be proved’: for over 2000 years, mathematicians have tried to prove that
Euclid’s controversial “Parallel postulate” could be proved from the other
axioms in geometry, until it was established beyond doubt in the 19th cen-
tury that this axiom does not follow from the other 4 axioms of Euclid.

The Axiom of Choice is a bit peculiar among axioms of mathematics,
because it asserts the existence of a function, without telling you what it is.
It takes a while to get used to the axiom, and it has remained somewhat
controversial ever since its formulation by Zermelo in 1904. Nevertheless,
modern mathematics is unthinkable without it, and almost all mathemati-
cians accept it as true. Moreover, the Axiom of Choice has been shown not
to contradict the other axioms of Set Theory (this is another famous result
of Gödel, also in [11]): we will see these axioms in Chapter 4 of these notes.
Eventually, it was again Paul Cohen who showed that the Axiom of Choice
does not follow from the other axioms of set theory ([3]).

Informally, the Axiom of Choice states that given a collection of non-
empty sets, there is a way to choose an element from each set in the collec-
tion. Here is a more precise formulation, which looks simpler.

Definition 1.2.1 The Axiom of Choice (AC) is the assertion that for every
surjective function f : X → Y there exists a “section”, that is a function
s : Y → X such that f(s(y)) = y for each y ∈ Y .

In order to “define” such a section as in definition 1.2.1, one has to “choose”,
for each y ∈ Y , an x ∈ X such that f(x) = y. In general, the Axiom of
Choice is needed when:

• there is more than one x such that f(x) = y (see Exercise 14), and

• Y is infinite (see Exercise 15)

But even in these circumstances the Axiom of Choice is not always necessary;
for example, if, in definition 1.2.1, X = N, we can simply define s(y) as the
least n such that f(n) = y (this is the solution of Exercise 8 i) ).

An example of a genuine application of the Axiom of Choice is given
by the following simple proposition, which you may have thought was self-
evident.

Proposition 1.2.2 If X is an infinite set, there is an injective function
N → X, hence ω ≤ |X|.
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Proof. Intuitively, one can ‘choose’ for each n ∈ N an element g(n) ∈ X
such that g(n) is different from all elements chosen before. This reasoning
is perfectly correct, but below we present a detailed proof, just in order to
make clear exactly how the Axiom of Choice is used.

First we remark that if (x1, . . . , xn) is a finite sequence of elements of X
such that xi 6= xj whenever i 6= j, there is an element xn+1 ∈ X such that
xi 6= xn+1 for all i ≤ n; for if not, we would have |X| = n, and X would be
finite.

Now let A be the set of all such finite sequences (x1, . . . , xn) with at least
one element; and let B be the union A∪ {∗}, where ∗ is any element not in
A. Define a function f : A→ B by:

f((x1)) = ∗
f((x1, . . . , xn+1)) = (x1, . . . , xn)

Then by our remark, we see that f : A→ B is surjective, and so the Axiom
of Choice says there is a section s : B → A.

This section s allows us to define a function g : N → X by induction:
let g(0) be the element of X such that s(∗) = (g(0)); if g(0), . . . , g(n) have
been defined, let g(n + 1) be the element of X such that

s((g(0), . . . , g(n))) = (g(0), . . . , g(n + 1))

Convince yourself that the function g thus defined, is indeed injective.

Exercise 13 Use proposition 1.2.2 to show that if A is infinite and B is
finite,

|A| + |B| = |A|

Exercise 14 If A is nonempty and s : A → B is injective, there is a sur-
jective function f : B → A such that f(s(a)) = a for all a ∈ A. Prove this,
and show that the proof does not require the axiom of choice.

Exercise 15 Prove the Axiom of Choice (every surjective f : X → Y has
a section) in the following two special cases:

a) Y is finite [Hint: induction on the cardinality of Y ];

b) X is countable.

The axiom of choice is essential for deriving basic properties of cardinalities,
such as given by the following proposition.
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Proposition 1.2.3 Let I be a countable set and suppose for each i ∈ I, a
countable set Xi is given. Then the union

⋃

i∈I

Xi

is again a countable set.

Proof. If I ′ ⊆ I is the subset {i ∈ I |Xi 6= ∅} then
⋃

i∈I Xi =
⋃

i∈I′ Xi,
and I ′ is countable by Exercise 8 iv). So we may as well assume that Xi is
nonempty for each i ∈ I.

If I is empty, the union is empty, hence countable. So let I be nonempty.

Let g : N → I be a surjective function; such g exists because I is count-
able.

Let J be the set of all pairs (f, i) such that f : N → Xi is surjective.
The function J → I, given by (f, i) 7→ i, is surjective, because each Xi is
nonempty and countable. By AC, it has a section s. Let fi : N → Xi be
such that s(i) = (fi, i).

Now consider the function

h : N × N →
⋃

i∈I

Xi

defined by: h(n,m) = fg(n)(m). Convince yourself that h is surjective.
Combining with a surjective function N → N × N, we see that

⋃

i∈I Xi is
indeed countable, as required.

No doubt you have seen theorem 1.2.3 before, but it may not be clear to
you why the Axiom of Choice is necessary for its proof. The reason is, that
in order to do the construction in the proof we have to choose surjective
functions N → Xi for all (possibly infinitely many) i. Indeed, without the
Axiom of Choice we cannot prove that R (which is always an uncountable
set, as we have seen) is not a union of countably many countable sets ([25])!

Exercise 16 Prove that the set

{x ∈ R | sin(x) ∈ Q}

is countable.

Another simple application of the axiom of choice is in the following theorem
of analysis: if A is a bounded, infinite subset of R, then there is an element
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a ∈ A such that A−{a} contains a sequence which converges to a (Bolzano-
Weierstrass).

Later we shall see that, as a consequence of AC, we have for any two sets
X and Y : either |X| ≤ |Y | or |Y | ≤ |X|.
There are many statements which are equivalent to the Axiom of Choice.
We shall now present one, which is closer to our intuitive description of AC
at the beginning of this section. We need the following definitions:

Definition 1.2.4 Let I be a set and let Xi be a set for each i ∈ I.

a) The disjoint sum
∐

i∈I Xi is the set of all pairs (i, x) with i ∈ I and
x ∈ Xi.

b) The product
∏

i∈I Xi is the set of functions f : I → ⋃

i∈I Xi such that
f(i) ∈ Xi for each i ∈ I.

Proposition 1.2.5 The Axiom of Choice is equivalent to the statement:

(Π) For every family of sets {Xi | i ∈ I} such that Xi is nonempty for each
i ∈ I, the set

∏

i∈I

Xi

is nonempty.

Proof. First we show that AC implies the statement (Π). So let Xi be
nonempty for each i. Then the function

∐

i∈I Xi → I which takes (i, x) to
i, is surjective and has therefore a section s by AC.
Let

t : I →
⋃

i∈I

Xi

be such that s(i) = (i, t(i)); then t is an element of
∏

i∈I Xi, as is easy to
check.

Conversely, assume (Π) and let f : X → Y be a surjective function.
Then we have, for each y ∈ Y , the nonempty set Xy = {x ∈ X | f(x) = y}.
By (Π), the set

∏

y∈Y Xy is nonempty. But any element of this set is a
section of f .

Example. This example is meant to give some intuition about the use or
non-use of AC. Consider the sets R, Z and Q. We have the equivalence
relations ∼Z and ∼Q on R:

x ∼Z y iff y − x ∈ Z

x ∼Q y iff y − x ∈ Q
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and write R/Z and R/Q respectively for the sets of equivalence classes.
There are evident surjective functions

ϕ : R → R/Z ψ : R → R/Q

For ϕ, we can explicitly describe a section σ : R/Z → R: for every equiva-
lence class ξ, the intersection of ξ with the half-open interval [0, 1) contains
exactly one point, which we take as σ(ξ).

We can not do something similar for ψ. The Axiom of Choice says that
there must be a section, but it cannot be described explicitly.

1.2.1 Partially Ordered Sets and Zorn’s Lemma

Zorn’s Lemma (formulated independently by Kazimierz Kuratowski and
Max Zorn) is a principle which is equivalent to the Axiom of Choice, but
formulated quite differently; in many cases, it is easier to apply than AC.

The formulation uses the notions of a chain in a partially ordered set,
which we shall define first.

Definition 1.2.6 A partially ordered set or poset is a set P together with
a relation ≤ between elements of P , such that the following conditions are
satisfied:

i) For every p ∈ P , p ≤ p holds (one says that the relation ≤ is “reflex-
ive”);

ii) for every p, q, r ∈ P , if p ≤ q and q ≤ r hold, then p ≤ r holds (the
relation ≤ is said to be “transitive”), and

iii) for every p, q ∈ P , if both p ≤ q and q ≤ p hold then p = q (the
relation ≤ is “antisymmetric”).

We shall usually denote a poset as (P,≤), and the relation ≤ is pronounced
as “less than or equal to”. The converse relation ≥, “greater than or equal
to”, is defined by x ≥ y if and only if y ≤ x.

Examples.

a) The most important example of a poset is the powerset P(A) of a set
A: the relation p ≤ q holds for subsets p and q of A, if and only if p is
a subset of q (p ⊆ q).

b) If (P,≤) is a poset and S ⊆ P then clearly the restriction of the
relation ≤ to elements of S gives a poset (S,≤).
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c) Combining a) and b), we see that any collection C of subsets of a set
X (i.e., C ⊆ P(X)) is naturally a poset when ordered by inclusion.

d) The usual order relations on N, Z, Q and R make these sets into posets.
These posets have the additional property that every two elements are
comparable; that is, for each x and y, we have either x ≤ y or y ≤ x.
Posets in which every two elements are comparable are called total or
linear orders. Note, that the poset P(X) is not a total order (at least
if X has more than one element).

e) Note, that if (P,≤) is a poset, then (P,≥) is a poset too.

Definition 1.2.7 Let (P,≤) be a poset.

i) A subset C of P is called a chain if C with the restricted order, is a
total order. In other words, if either p ≤ q or q ≤ p holds, for any two
elements p, q of C.

ii) If S is any subset of P , an element p of P is called an upper bound
for S if for each s ∈ S we have s ≤ p (p itself doesn’t need to be a
member of S).

iii) An element p ∈ P is called maximal if no element is strictly greater:
whenever p ≤ q we must have p = q.

Example. Let A be a fixed set with more than one element, and P = {S ⊆
A |S 6= A}, ordered by inclusion. This poset P has many maximal elements,
namely the sets A − {a} for a ∈ A. On the other hand, P does not have a
greatest element.

If C ⊆ P is a chain and the union
⋃

C = {x ∈ A | ∃S ∈ C x ∈ S}

is not equal to A, then this set is an upper bound for C. If
⋃
C = A, the

chain C does not have an upper bound in P .

Exercise 17 Suppose X and Y are sets. Let P be the set of all pairs (A, f)
where A is a subset of X and f is a function A→ Y . Then P is a poset with
the following relation: (A, f) ≤ (B, g) iff A ⊆ B and f is the restriction of
g to A.
Show that if C = {(Ai, fi) | i ∈ I} is a chain in P , there is a unique function
f :

⋃

i∈I Ai → Y such that for each i, fi is the restriction of f to Ai.
Conclude that every chain in P has an upper bound in P .
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Definition 1.2.8 Zorn’s Lemma is the following assertion: if (P,≤) is a
poset with the property that every chain in P has an upper bound in P ,
then P has a maximal element.

Note that if P satisfies the hypothesis of Zorn’s Lemma, then P is nonempty.
This is so because the empty subset of P is always a chain. However, check-
ing that every chain has an upper bound in P usually involves checking this
for the empty chain separately; that is, checking that P is nonempty (see
the Example below).

Zorn’s Lemma isn’t a lemma, but a “principle” of a status similar to that
of the Axiom of Choice (cf. the remarks at the beginning of the section on
AC).

Example: Maximal ideals in rings. Let R be a commutative ring with 1.
Let P be the poset of all proper ideals of R (that is, ideals I 6= R), ordered
by inclusion. If C is a nonempty chain of ideals, its union

⋃
C is an ideal

too, and
⋃
C is proper, since 1 6∈ ⋃

C because C consists of proper ideals.
Moreover, P is nonempty since {0} is a proper ideal (why?). So, every chain
in P has an upper bound. Hence, by Zorn’s Lemma, P has a maximal
element, which is a maximal ideal in R.

Example: Bases for vector spaces. Let V be a vector space over R (or, in
fact, any other field), for example the set of continuous functions from [0, 1]
into R. Then V has a basis, that is a subset B ⊂ V with the property that
every v ∈ V can be written as a finite sum

v = k1b1 + · · · + knbn

with k1, . . . , kn ∈ R and b1, . . . , bn ∈ B, and moreover this finite sum is
unique. In order to prove this, let P be the poset of those subsets B ⊂ V
which are linearly independent (no element of B can be written as a linear
combination of other elements of B), ordered by inclusion. If B is a maximal
element of P , B must be a basis (check!).

Our next example uses Zorn’s Lemma to prove the Axiom of Choice.

Proposition 1.2.9 Zorn’s Lemma implies the Axiom of Choice.

As we have already remarked, Zorn’s Lemma is equivalent to AC. Here we
prove the most important implication. For the other direction, see sec-
tion 1.4.
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Proof. We assume that Zorn’s Lemma is true.

Suppose given a surjective function f : X → Y . A partial section of f
is a pair (A,u) where A is a subset of Y and u : A → X a function such
that f(u(y)) = y for each y ∈ A. Given two such partial sections (A,u) and
(B, v), put (A,u) ≤ (B, v) iff A ⊆ B and u is the restriction of v to A. Let
P be the set of partial sections (A,u) of f ; then with the relation ≤, P is a
poset, as is easy to see.

P is nonempty; this is left to you. Moreover, if C = {(Ai, ui) | i ∈ I} is
a chain in P , C has an upper bound; this is similar to Exercise 17. So the
poset (P,≤) satisfies the hypotheses of Zorn’s Lemma, and has therefore a
maximal element (A, s).

We claim that A = Y , and therefore that s is a section for f . Suppose
that y 6∈ A. Then since f is surjective, there is an element x ∈ X such that
f(x) = y. If we define the function s′ : A ∪ {y} → X by

s′(w) =

{
s(w) if w ∈ A
x if w = y

then we see that (A∪{y}, s′) is a partial section of f which is strictly greater
than (A, s); this contradicts the fact that (A, s) is maximal. It follows that
A = Y and we have found a section for f .

It is another important consequence of Zorn’s Lemma that any two cardinal
numbers |X| and |Y | can be compared: we have either |X| ≤ |Y | or |Y | ≤
|X|. In other words, for every two setsX and Y , there is an injective function
X → Y , or there is an injective function Y → X (or both, of course).

Proposition 1.2.10 Zorn’s Lemma implies the following statement: for
any two sets X and Y ,

|X| ≤ |Y | or |Y | ≤ |X|

holds.

The statement in the proposition is sometimes called the “Law of Tri-
chotomy” (because one can equivalently put it as: one of the three pos-
sibilities |X| < |Y |, |X| = |Y | or |Y | < |X| is true). We shall refer to it as
the Principle of Cardinal Comparability (PCC).

Conversely, the Principle of Cardinal Comparability can be shown to be
equivalent to Zorn’s Lemma (or AC). For this, see the Appendix (sec-
tion 1.4).
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Proof. Let X and Y be sets.
We consider a poset P of triples (U, f, V ), where U ⊆ X, V ⊆ Y and

f : U → V is a bijective function. This is ordered similarly as in the proof
of 1.2.9: (U, f, V ) ≤ (U ′, f ′, V ′) iff U ⊆ U ′ and f is the restriction of f ′ to
U (note, that this implies that V ⊆ V ′).

P is nonempty, since we have ∅ as subset of both X and Y , and the
“empty function” is bijective.

If {(Ui, fi, Vi) | i ∈ I} is a chain in P , there is a well-defined function
f :

⋃

i∈I Ui →
⋃

i∈I Vi which is a bijection. Therefore, every chain in P has
an upper bound, and by Zorn’s Lemma P has a maximal element (U, f, V ).
If U 6= X and V 6= Y , say x ∈ X − U and y ∈ Y − V , we can obviously
define a bijection between U ∪ {x} and V ∪ {y} which extends f , and this
contradicts the maximality of (U, f, V ). Hence, either U = X, in which case
f is an injective function from X into Y , or V = Y , in which case the inverse
of f is an injective function Y → X.

Exercise 18 Prove the following variation: if X and Y are nonempty sets,
then there is either a surjective function X → Y or a surjective function
Y → X. You can do this either by using Zorn’s Lemma (and mimicking the
proof of Proposition 1.2.10), or by applying that proposition directly.

It follows from Proposition 1.2.10, that we can define the maximum of two
cardinal numbers: max(|X|, |Y |) = |X| if |Y | ≤ |X|, and it is |Y | otherwise.

This allows us to state the following properties of the arithmetic of cardi-
nal numbers, which generalize Proposition 1.1.4. The proof makes essential
use of Zorn’s Lemma.

Proposition 1.2.11 Let A and B be infinite sets. Then the following hold:

i) |A| + |A| = |A|

ii) |A| + |B| = max(|A|, |B|)

iii) |A| × |A| = |A|

iv) |A||A| = 2|A|

Proof. For i), we have to show that there is a bijective function: A+A→ A.
To this end, we consider the poset of pairs (X, f) where X is a subset of
A and f : X + X → X is bijective. This is ordered by: (X, f) ≤ (Y, g) if
X ⊆ Y and f is the restriction of g to X +X.

If {(Xi, fi) | i ∈ I} is a chain in this poset, then there is a well-defined
bijective function f : X +X → X, where X =

⋃

i∈I Xi and f is such that f
extends each fi.
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Therefore, the poset under consideration satisfies the hypothesis of Zorn’s
Lemma (check this!) and has therefore a maximal element (X, f). We claim
that for this (X, f), A−X must be finite.

To prove this claim, we use Proposition 1.2.2: if A−X is infinite, there is
an injective function N → A−X. Let N ⊆ A be the image of this function;
then we have a bijective function g : N + N → N (by 1.1.4), and since N
and X are disjoint, we can combine f and g to obtain a bijective function

(X ∪N) + (X ∪N) → X ∪N

which extends f ; but this contradicts the maximality of the pair (X, f) in
our poset. Therefore, A−X is finite and we have proved the claim.

Now A ∼ X + (A −X), so by Exercise 13, there is a bijective function
ϕ : A → X. Combining f and ϕ we obtain a bijection between A + A and
A:

A+A
ϕ+ϕ→ X +X

f→ X
ψ→ A

where ψ is the inverse of ϕ.

For ii): suppose that |A| ≤ |B|. We have to show that |A|+ |B| = |B|. Since
obviously |B| ≤ |A| + |B| and |A| + |B| ≤ |B| + |B| by hypothesis, using i)
we have

|B| ≤ |A| + |B| ≤ |B| + |B| ≤ |B|
so |B| = |A| + |B| as required. Note that this proof does not require that A
is infinite.

For iii), we form again a poset P of pairs (X, f) with X ⊆ A, but now with
X infinite and f : X ×X → X bijective. By Propositions 1.2.2 and 1.1.4ii),
the poset P is nonempty. We order this ‘by extension’ as in the proof of
i) (note that X ⊆ Y implies X × X ⊆ Y × Y ). In the same way as in i)
we see that every chain in P has an upper bound (check for yourself that if
{Xi | i ∈ I} is a chain of sets under the inclusion ordering, and X =

⋃

i∈I Xi,
then X ×X =

⋃

i∈I(Xi ×Xi)).
By Zorn’s Lemma, P has a maximal element (M,f). If |M | = |A| we

use the bijection between M and A, together with f , to obtain a bijection
between A×A and A and we are done.

So suppose |M | < |A|. Now M is infinite by definition of P , and also
A−M is infinite: if A−M were finite then we would have A ∼M + (A−
M) ∼ M , contradicting our assumption. Therefore, we can apply part ii),
to conclude that A ∼ A−M .

Let g : A→ A−M be bijective. If M ′ is the image of M under g, then
M and M ′ are disjoint and g restricts to a bijection between M and M ′.
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Combining g and f , we also find a bijection f ′ : M ′ ×M ′ →M ′. Moreover,
since M and M ′ are disjoint, we have M ∪M ′ ∼ M +M ′, and we can find
a bijective function

F : (M ∪M ′) × (M ∪M ′) →M ∪M ′

which extends f , as follows: we have

(M +M ′) × (M +M ′) ∼ (M ×M) + (M ×M ′) + (M ′ ×M) + (M ′ ×M ′)

We have M×M ∼M via f , and we have (M×M ′)+(M ′×M)+(M ′×M ′) ∼
M ′ by using f , g, f ′ and part i) of the proposition twice.

Finally, for iv) we first notice that since A is infinite, 2 < |A| so 2|A| ≤ |A||A|;
for the converse inequality, we know from Proposition 1.1.5 that |A| < 2|A|,
so |A||A| ≤ (2|A|)|A|. Using iii) of the proposition, we see that (2|A|)|A| =
2|A|×|A| = 2|A|, and we are done.

Exercise 19 a) Let A and B be nonempty sets, at least one of them
infinite. Show that

|A| × |B| = max(|A|, |B|)

b) Show that if A is infinite, then there is a bijection between A and
N ×A.

c) Let A be an infinite set. Denote by A∗ the set of all finite sequences
of elements of A; that is,

A∗ =

∞⋃

n=0

An

(here A0 has just one element, the empty sequence (·)).
Show, that |A∗| = |A|.

d) Let A be infinite; show that |A| = |Pfin(A)| (where Pfin(A) is the set
of finite subsets of A).

Let us come back to the example of vector spaces and show that if both
B and B′ are bases of a vector space V , then |B| = |B′|. This cannot be
proved without the Axiom of Choice!

We make use of the fact that a basis of a vector space V is a subset
B which generates V (every element of V can be written as a finite linear
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combination of elements of B) but is minimal with this property: no proper
subset of B generates V .

So, let B and B′ be bases of V . We assume that you know the result in
the case that B and B′ are finite. So suppose B is infinite.

For every b ∈ B′ there is a finite subsetBb of B such that b can be written
as a linear combination of elements of Bb. Then

⋃

b∈B′ Bb is a subset of B
which generates V , so by minimality of B,

B =
⋃

b∈B′

Bb

It follows that also B′ is infinite (otherwise, B would be a finite union of
finite sets). Since every Bb is finite, there are injective functions Bb → N

and we see that
|B| ≤ |B′| × ω = |B′|

By symmetry, |B| = |B′|, as required.

We close this section with some miscellaneous exercises involving Zorn’s
Lemma and cardinalities.

Exercise 20 Let X be an infinite set. Prove that there is a bijection f :
X → X with the property that for every x ∈ X and all n > 0, fn(x) 6= x
[Hint: consider Z ×X, or use Zorn directly].

Exercise 21 Prove that there is a linear order on any set.

Exercise 22 Prove that there is a dense linear order on any infinite set:
that is, a linear order such that whenever x < y, there is a z such that
x < z < y [Hint: use the previous exercise to find a linear order on X; then
consider Q ×X]

Exercise 23 This exercise is one of the first applications, given by Cantor
([1]), of his theory of cardinalities to number theory.

A real number r is called algebraic if there is a non-zero polynomial

f(X) = Xn + a1X
n−1 + · · · + an−1X + an

with a1, . . . , an ∈ Q and f(r) = 0. A number which is not algebraic, is called
transcendental. Write A for the set of algebraic real numbers, and T for the
set of transcendental real numbers.

Prove that |A| = ω and |T | = |R|.
This was Cantor’s proof that transcendental numbers exist, and that there
are very many of them.
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Exercise 24 In this exercise we consider R as a group under addition.

a) Prove, using Zorn’s Lemma, that there is a subgroup G of R which is
maximal w.r.t. the property that 1 6∈ G.

b) Suppose G is as in a). Show that there is a unique prime number p
such that p ∈ G.

c) Let p be as in b). Prove that for every x ∈ R there is an n ≥ 0 such
that pnx ∈ G.

Exercise 25 For a subset A of R such that 0 6∈ A, we define:
√

Q = {x ∈ R |x2 ∈ Q}
Q/A = { q

a
| q ∈ Q − {0}, a ∈ A}

Prove, that there is a subset A ⊂ R − {0} such that R can be written as a
disjoint union

A ∪
√

Q ∪ Q/A

[Hint: apply Zorn’s Lemma to the poset of those A ⊂ R for which the
following holds: for all x, y ∈ A, xy 6∈ Q]

1.3 Well-Ordered Sets

Definition 1.3.1 A partial order (L,≤) is a well-order , or a well-ordered
set , if every nonempty subset S of L has a least element w.r.t. the order ≤:
there is an element s0 ∈ S such that for each s ∈ S, s0 ≤ s.
We shall also sometimes say, that the relation ≤ well-orders L.

Recall that a partial order (L,≤) is linear or total if for all x, y ∈ L we have
x ≤ y or y ≤ x.

Exercise 26 Prove that every well-order is linear.

Let us see some examples of well-orders.

1) The set N is a well-ordered set. That this is so, is exactly the principle
of induction for natural numbers. We shall see later, that conversely
for every well-order there is a similar ‘induction principle’ (Proposi-
tion 1.3.4).

2) Z is not a well-ordered set (with the usual ordering): Z itself has no
least element. In the same way, Q and R are not well-ordered in the
usual ordering.
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3) Define a new ordering on N by putting: n ≤ m if either n and m are
both odd and n is smaller than m in the usual ordering, or n and m
are both even and n is smaller than m in the usual ordering, or n is
even and m is odd. This looks like:

0 ≤ 2 ≤ 4 ≤ · · · ≤ 1 ≤ 3 ≤ 5 ≤ · · ·

and ≤ is a well-ordering. In a similar way, we can have:

0 ≤ 3 ≤ 6 ≤ · · · ≤ 1 ≤ 4 ≤ 7 ≤ · · · ≤ 2 ≤ 5 ≤ 8 ≤ · · ·

and so on.

4) Every finite linear order is a well-order.

5) The set {1 − 1
n
|n > 0} ∪ {1} is a well-ordered subset of R.

The Well-Ordering Theorem (Zermelo, see section 1.4) says that for every
set X there is a well-order on X.

Exercise 27 Prove:

a) If (L,≤) is a well-order, then so is every subset of L, with the restricted
order.

b) If (L,≤L) and (M,≤M ) are two well-ordered sets, we can define the
lexicographic order on the product L × M : for elements (x, y) and
(x′, y′) of L×M , put (x, y) ≤ (x′, y′) if either y <M y′, or y = y′ and
x ≤L x

′. Then ≤ well-orders L×M .
The lexicographic order can be pictured as follows: view M as points
on a line (since M is linearly ordered) and replace every point of M
by a copy of L.

Generalize this construction to: if L is a well-order and for each i ∈ L
we are given a well-order Mi, then there is a well-order on the set
∐

i∈LMi.

c) This is a special case of the generalization in part b):

If (L,≤L) and (M,≤M ) are two disjoint well-ordered sets, we can
define an order on the union L ∪M as follows: for x, y ∈ L ∪M we
put x ≤ y iff: either both x and y are elements of L, and x ≤L y, or
x ∈ L and y ∈ M , or both x and y are elements of M and x ≤M y.
Then ≤ well-orders L ∪M .
This well-order on L∪M , which we denote by L+M , looks like putting
M “on top of” L.
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The following criterion gives an equivalent way of defining well-orders.

Proposition 1.3.2 A linear order (L,≤) is a well-order if and only if for
every infinite decreasing sequence

x0 ≥ x1 ≥ x2 ≥ · · ·

in L, there is an n such that for all m > n, xn = xm.

Exercise 28 Prove Proposition 1.3.2. In one direction, you need to use the
Axiom of Choice, in a way similar to the proof of Proposition 1.2.2.

Exercise 29 Recall that if (X,≤) is a poset, then (X,≥) is one too.
Prove: if (X,≤) and (X,≥) are both well-orders, then X is finite.

We introduce some terminology for elements of a well-ordered set L. Clearly,
the empty set is well-ordered; but since it has no elements, we don’t have to
say anything about it.

If L is nonempty, L (as nonempty subset of itself) has a least element,
which we may as well call 0L. If 0L is the only element of L, we are done.

In general, if x is not the greatest element of L, the set {y ∈ L |x < y}
has a least element, which we call x+ 1. So if L is infinite, L contains

{0L, 0L + 1 = 1L, 1L + 1 = 2L, 3L, 4L, . . .}

as a subset; let us call this the finite part of L. If this subset is not the whole
of L, its complement has a least element ωL, and we may have ωL, ωL+1, . . ..
This process may continue indefinitely!

An element of L is called a successor element, if it is the smallest element
in L strictly greater than some x ∈ L, i.e. if it is of the form x+1; otherwise,
it is called a limit element. Note, that 0L is a limit element, as is ωL.

In a well-order (or more generally, in a poset), a least upper bound or
l.u.b. of a subset S, is an upper bound x for S (see Definition 1.2.7) such
that for every upper bound y for S we have x ≤ y. Note, that least upper
bounds need not always exist in a poset, but if they exist, they are unique.
Note also, that x is a l.u.b. of the empty set if and only if x is the least
element.

Proposition 1.3.3 In a well-order (L,≤), every subset of L which has an
upper bound in L, has a least upper bound. Moreover, an element x of L is
a limit element, if and only if x is the least upper bound of the set

{y ∈ L | y < x}
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Proof. If S has an upper bound in L, the set of upper bounds (in L) of S
is nonempty, so it has a least element.

Suppose x is the l.u.b. of Lx = {y | y < x}. Then if x = z + 1 we must
have that z is the greatest element of Lx and therefore its least upper bound;
but z and x are distinct, so we see that x is a limit element.

Conversely, suppose x is a limit element. Then for each y < x, x is not
equal to y + 1, so y + 1 < x. It follows that no element smaller than x can
be the l.u.b. of Lx; but x is an upper bound for Lx, so it is the l.u.b.

We are now going to look at the principle of induction for well-ordered sets
L. The well-known induction principle for natural numbers,

(I0) If S ⊆ N has the properties that 0 ∈ S and for all n ∈ N, n ∈ S implies
n+ 1 ∈ S, then S = N

has an equivalent formulation:

(I1) If S ⊆ N has the property that for each n ∈ N, n ∈ S whenever
∀m < n (m ∈ S), then S = N

In a similar way, we have two equivalent induction principles for an arbitrary
well-ordered set L.

Proposition 1.3.4 Let (L,≤) be a well-ordered set, and S ⊆ L an arbitrary
subset.

i) If for each x ∈ L, the statement ∀y ∈ L (y < x ⇒ y ∈ S) implies
x ∈ S, then S = L.

ii) If 0L ∈ S, S is closed under the successor function (mapping x to
x+1) and for each nonzero limit element l ∈ L we have l ∈ S whenever
{x ∈ L |x < l} ⊆ S, then S = L.

Proof. i) If S 6= L then L − S has a least element x. Then we must have
∀y < x (y ∈ S) yet x 6∈ S which contradicts the assumption of i).

ii) is left to you as exercise.

Exercise 30 Prove Proposition 1.3.4ii).

Example. Let us prove, by induction on L, that for each x ∈ L there is a
unique limit element l ≤ x and a unique natural number n such that

x = l + n

(l + n is shorthand for: the n-th successor of l, so l + 0 = l, etc.)
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Since the successor function is 1-1 where it is defined (check this!), it is
easy to show that such a representation is unique. Suppose l + n = l′ + n′.
Then by induction on n we show that l = l′ and n = n′: if n = 0, we have
l = l′ + n′ whence n′ = 0 because l is a limit; and if n = k + 1 then l + n is
a successor, so n′ = k′ + 1 for some k′. By injectivity of the successor, we
have l + k = l′ + k′ and by induction hypothesis it follows that l = l′ and
k = k′, so n = n′.
For existence of the representation, we use induction on L: clearly, 0L has
the representation 0L+0, for 0L is a limit. If x = l+n then x+1 = l+(n+1),
and if l is a limit, it has representation l + 0.

For natural numbers, one has, beside induction to prove properties of natural
numbers, also the possibility of defining functions by recursion: a function f
is defined on natural numbers by a scheme which defines f(n+1) in terms of
f(n) or in terms of {f(k) | k ≤ n}. An example is the well-known Fibonacci
sequence: f(0) = f(1) = 1, and f(n+ 2) = f(n) + f(n+ 1). Induction and
recursion are really two sides of the same coin, so it is not surprising that
we can also define functions on an arbitrary well-ordered set L by recursion.
The idea is, that one defines f(x) in terms of the (not necessarily finite)
set {f(y) | y < x}. There are various formulations. We prove one in the
proposition below, and give others as exercises.

Proposition 1.3.5 Let (L,≤) be a well-order, and S a set. Suppose we
are given a function R : L × P(S) → S. Then there is a unique function
F : L→ S with the property that

(∗) F (l) = R(l, {F (x) |x < l})

for each l ∈ L.
The function F is said to be defined by recursion from R.

Proof. In this proof, let Lz denote the set {y ∈ L | y ≤ z}, for z ∈ L.
First, let us see that if F is a function from Lz to S such that F satisfies

condition (∗), then F is unique with this property; for if also G : Lz → S
satisfies (∗) and F 6= G, there must be a least element m ∈ Lz such that
F (m) 6= G(m); however in that case the sets {F (x) |x < m} and {G(x) |x <
m} are equal so that by (∗), F (m) = G(m) which contradicts our assumption
on m.

Similarly, any F : L→ S satisfying (∗) must be unique.
From this uniqueness it follows that if z1 < z2 in L and F1 : Lz1 → S

and F2 : Lz2 → S satisfy (∗), then F1 must be the restriction of F2 to the
subset Lz1.
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Therefore, if for each z ∈ L a function Fz : Lz → S exists which satisfies
(∗), the functions Fz can be patched together to a unique function

F : L =
⋃

z∈L

Lz → S

and F also satisfies (∗) because for z ∈ L we have F (z) = Fz(z).
We see that in order to finish the proof it is enough to show that for each

z ∈ L, a function Fz as above exists. We do this by induction on L: for an
application of 1.3.4(i) let E be the set {z ∈ L |Fz exists}. We wish to show
E = L.

Suppose, for a given z ∈ L, that w ∈ E for all w < z; that is Fw : Lw → S
exists and satisfies (∗). We define Fz : Lz → S by putting

Fz(w) = Fw(w) for w < z
Fz(z) = R(z, {Fw(w) |w < z})

Check yourself that Fz satisfies (∗). We have proved that z ∈ E on the
assumption that w ∈ E for all w < z, that is, the hypothesis of 1.3.4(i), and
may conclude that E = L, as desired.

Exercise 31 Let (L,≤) be a well-order and S a set. Prove the following
two variations on the principle of recursion.

i) For any R : P(S × L) → S there is a unique F : L→ S with

F (x) = R({(F (y), y) | y < x})

ii) For any s0 ∈ S, any R : P(S) → S and any g : S → S there is a
unique function F : L→ S such that

F (0L) = s0
F (l + 1) = g(F (l)) if l is not maximal in L

F (l) = R({F (y) | y < l}) if l is a nonzero limit in L

Example Let us give a simple example of a function L → {0, 1} defined
by recursion: the parity function. If, in the formulation of Exercise 31ii),
s0 = 0, g the switch (g(x) = 1 − x), and R the constant 0 function, one
obtains a unique function F : L→ {0, 1} such that F (x) is nmod 2 where n
is the unique natural number such that for some limit element l, x = l+ n.

More fundamental examples of functions defined by recursion appear in
the proof of Proposition 1.3.9 below, and in the Appendix (1.4).

We conclude this section by discussing how to compare well-orders.
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Definition 1.3.6 Let (L,≤) and (M,≤) be well-orders.

i) An initial segment of L is a subset B ⊆ L such that for each x, y ∈ L:
if x ∈ B and y ≤ x, then y ∈ B.

ii) An (order-)isomorphism f : L → M is an order-preserving bijective
function.

iii) An embedding f : L→M is an order-isomorphism from L to an initial
segment of M .

We write L ∼= M if there is an order-isomorphism between L and M , and
L �M if there exists an embedding of L into M .

Lemma 1.3.7 There can be at most one embedding from one well-order L
into another well-order M . Therefore, if L is a well-ordered set and l ∈ L,
L is never isomorphic to {l′ ∈ L | l′ < l}.

Proof. Suppose f and f ′ are two different embeddings: L → M . Then
{x ∈ L | f(x) 6= f ′(x)} is nonempty and has a least element x0. We may
suppose (since M is in particular a total order) that f(x0) < f ′(x0). But
now we have: if y < x0 then f ′(y) = f(y) < f(x0) and if y ≥ x0 then
f ′(y) ≥ f ′(x0) > f(x0). We conclude that f(x0) is not in the image of f ′,
which is therefore not an initial segment.

For the second statement we notice that every isomorphism is in par-
ticular an embedding. The only embedding of {l′ ∈ L | l′ < l} into L is
the inclusion map, but l is not in the image of this map, so it is not an
isomorphism.

Corollary 1.3.8 If L �M and M � L then L ∼= M .

Proof. If i : L→M and j : M → L are embeddings, then the composition
ji : L → L is an embedding too. Since there is only one embedding from
L to L by Proposition 1.3.7 and the identity function f(x) = x is one, we
see that j(i(x)) = x for all x ∈ L. Similarly, i(j(y)) = y for all y ∈ M ; so
L ∼= M .

Proposition 1.3.9 For any two well-orders L and M , we have either L �
M or M � L.

Proof. Let ∞ be a new point not contained in M . Let M ′ = M ∪ {∞}.
Define R : L × P(M ′) → M ′ as follows: R(l, S) is the least element in

M of M −S, if this set is nonempty, and ∞ otherwise. The function R does
not really depend on l, but that doesn’t matter.
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By proposition 1.3.5 there is a unique function F : L→M ′, such that

F (l) = R(l, {F (x) |x < l})

for all l ∈ L.

If F (l) 6= ∞ for all l ∈ L, then F is an embedding from L into M
(as we leave for you to check). Otherwise, if l0 is the least element of L
such that F (l0) = ∞, then F restricts to an isomorphism between M and
{x ∈ L |x < l0}, in which case there is an embedding of M into L.

Exercise 32 Prove: if L and M are well-orders, L � M and L 6∼= M , then
there is an m ∈ M such that L ∼= Mm where Mm = {x ∈ M |x < m}.
Prove also, that this m is unique.

Exercise 33 Let L be a well-order and f : L→ L a map with the property
that x < y implies f(x) < f(y) for all x, y ∈ L.

Show that x ≤ f(x) for all x ∈ L. Show also, that this does not follow
from the weaker condition that x ≤ y implies f(x) ≤ f(y).

Exercise 34 Let L be a set. Write P∗(L) for the set of nonempty subsets
of L. Suppose that h : P∗(L) → L is a function such that the following two
conditions are satisfied:

i) For each nonempty family {Ai | i ∈ I} of elements of P∗(L), we have

h(
⋃

i∈I

Ai) = h({h(Ai) | i ∈ I})

ii) For each A ∈ P∗(L), h(A) ∈ A

Show that there is a unique relation ≤ on L, which well-orders L, and such
that for each nonempty subset A of L, h(A) is the least element of A.

Exercise 35 Let L be a linear order. If A ⊂ L and a ∈ L, then a is called
a strict upper bound for A, if x < a for every x ∈ A. Now suppose that the
following is true for every A ⊆ L: if A has a strict upper bound, then A has
a least strict upper bound.

a) Prove: if L 6= ∅, then L has a least element.

b) Prove that L is a well-order [Hint: given a nonempty subset X of L,
consider the set AX = {x ∈ L | for all y ∈ X, x < y}]
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c) Show that b) may fail if we drop the ‘strict’ in ‘strict upper bound’.

Exercise 36 Extend the definition of ‘initial segment’ (1.3.6) to arbitrary
linear orders: an initial segment of (P,≤) is a subset B ⊆ P such that
whenever x ≤ y and y ∈ B, then x ∈ B.

Prove that a linear order (P,≤) is a well-order if and only if for every
subset S of P , (S,≤) is isomorphic to an initial segment of (P,≤).

1.4 Appendix: Equivalents of the Axiom of Choice

We start with a lemma that ensures the existence of “sufficiently large”
well-ordered sets. Then we formulate yet another principle, Zermelo’s Well-
Ordering Theorem (1.4.2), and prove rigorously that the Axiom of Choice,
Zorn’s Lemma, the Principle of Cardinal Comparability and the Well-Ordering
Theorem are all equivalent, relative to basic set theory.

In fact, these are just a few examples out of many: by now, there is a
multitude of statements and theorems for which it has been shown that they
are equivalent to the Axiom of Choice (you may have a look at the books
[16, 23]). Here we mention just two more such forms, without proof:

Hausdorff’s Maximality Principle says that every poset contains a
maximal chain (maximal w.r.t. inclusion of chains). It is actually
rather easy to show that this is equivalent to Zorn’s lemma.

Tychonoff’s Theorem in Topology says, that if {Xi | i ∈ I} is an arbi-
trary set of compact topological spaces, the product space

∏

i∈I

Xi

is again a compact space. The proof of Tychonoff’s Theorem makes
use of AC. On the other hand it can be shown that the theorem implies
AC (first proved in [18]; see also [16]).

It should be noted (and emphasized) that the proof of the following lemma
does not use the Axiom of Choice or Zorn’s Lemma. It was proved by
Friedrich Hartogs in [13].

Lemma 1.4.1 (Hartogs’ Lemma) For every set X there is a well-ordering
(LX ,≤) such that there is no injective function from LX to X.
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Proof. Let P be the set of all pairs (L,≤) where L is a subset of X and ≤
is a well-ordering on L. We shall denote the pair (L,≤) simply by L.

For two such L and M , we write L �M if there is a (necessarily unique,
by Lemma 1.3.7) embedding of well-ordered sets: L→M . Note:

- we have both L �M and M � L, if and only if L ∼= M ;

- if L ∼= L′ and M ∼= M ′, then L �M if and only if L′ �M ′.

We can therefore define an order relation ≤ on the set P/∼= of equivalence
classes of P modulo the equivalence relation ∼=. By Proposition 1.3.9, the
set P/∼= is a linear order with the relation ≤.

Note, that if L ≺ M (that is, L � M but M 6∼= L), there is (by Exer-
cise 32) a unique m ∈M such that L is isomorphic to the set Mm = {m′ ∈
M |m′ < m} with the inherited order from M .

Therefore, if we denote the ∼=-equivalence class of L by [L], the set

{α ∈ P/∼= |α < [L]}
is isomorphic to L.

Now suppose that W ⊆ P/∼= is a nonempty set of ∼=-equivalence classes.
Let α = [L] be an arbitrary element of W . Consider the set

LW = {l ∈ L | [Ll] ∈W}
If LW is empty, clearly [L] is the least element of W . If LW is nonempty,
then it has (as subset of the well-ordered set L) a least element lW . But
then [LlW ] is the least element of W . So every nonempty subset of P/ ∼=
has a least element, and therefore P/ ∼= is a well-ordered set.

There cannot be an injective function from P/ ∼= into X, for suppose f
is such a function. Then f gives a bijective function between P/ ∼= and a
subset Yf of X; we can then give Yf the same well-ordering as P/∼=, so we
have (Yf ,≤) ∼= (P/∼=,≤). This is impossible however, since [(Yf ,≤)] is an
element of P/∼= (see Proposition 1.3.7).

In his paper [27], Zermelo formulated the Axiom of Choice in order to prove
the following statement.

Definition 1.4.2 The Well-Ordering Theorem is the statement that for
every set X there exists a relation ≤ which well-orders X.

Remark. Although the Axiom of Choice is intuitively correct, here we see
a consequence which is less intuitive, for it asserts that there is a relation
which well-orders the set of real numbers, for example. However, it can be
shown that it is impossible to define such a relation explicitly ([8]).
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Proposition 1.4.3 The following assertions are equivalent:

i) The Axiom of Choice

ii) Zorn’s Lemma

iii) The Principle of Cardinal Comparability

iv) The Well-Ordering Theorem

Proof. We shall prove i)⇒ii)⇒iii)⇒iv)⇒i).
The implication i)⇒ii) uses Hartogs’ Lemma (1.4.1). Suppose that (P,≤)
is a poset in which every chain has an upper bound, yet P has no maximal
element. We shall prove, using the Axiom of Choice, that in that case for
every well-ordered set L there is an embedding of L into P . But this is a
contradiction with Hartogs’ Lemma.

Since in P every chain has an upper bound, P is nonempty; let p0 ∈ P .
By the Axiom of Choice there is a function R : P(P ) → P , such that for
every subset C of P we have: if C is a chain in P then R(C) is an upper
bound for C; and R(C) = p0 otherwise. Also, since P has no maximal
element, for every p ∈ P there is q ∈ P with p < q; again using AC, there is
a function g : P → P such that p < g(p) for every p ∈ P .

Let (L,≤) be an arbitrary well-ordered set. Define a function F : L→ P
by recursion over L as follows:

- F (0L) = p0

- F (x+ 1) = g(F (x))

- F (l) = R({F (x) |x < l}) if l is a non-zero limit element of L

It is easy to check that F is an injective function from L into P . L was
arbitrary, so we get a contradiction with Hartogs’ Lemma.
The implication ii)⇒iii) was done in the proof of Proposition 1.2.10.
The implication iii)⇒iv) uses Hartogs’ Lemma once again. Let X be a set.
According to Hartogs’ Lemma there is a well-ordered set (LX ,≤) such that
there is no injective function from LX into X. By Cardinal Comparability
then, there must be an injective function from X into LX ; but this gives us
a well-ordering on X.
Finally, iv)⇒i) is easy. Suppose f : X → Y is surjective. In order to find
a section for f , apply iv) to find a relation ≤ on X which well-orders X.
Now one can simply define a section s : Y → X by putting: s(y) is the least
element of the nonempty set f−1(y) in the well-ordering on X.
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Exercise 37 Give a direct proof of the fact that Zorn’s Lemma implies the
Well-Ordering Theorem.

Exercise 38 Let X be a set, and S a subset of P(X). We say that S is of
finite character if for every A ⊆ X it holds that A is an element of S, if and
only if every finite subset of A is an element of S.

The Teichmüller-Tukey Lemma states that if S is nonempty and of fi-
nite character, S contains a maximal element (with respect to the subset
ordering).

a) Use Zorn’s Lemma to prove the Teichmüller-Tukey Lemma.

b) Show that the Teichmüller-Tukey Lemma implies the Axiom of Choice.
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Chapter 2

Models

In this chapter we develop the notion of ‘formal language’ as promised in
the Introduction; and also its ‘interpretation’ in mathematical structures.

In the nineteenth century, a number of mathematicians started to reflect
on Logic; that is to say, the reasoning principles that are used in mathemat-
ical arguments (before that time, Logic belonged to the realm of Philosophy
and consisted in studying syllogisms – separate reasoning steps – such as
had been formulated by Aristotle).

It occurred to George Boole (1815–1864) and Augustus de Morgan (1806–
1871) that the mathematical use of the words ‘and’, ‘or’ and ‘not’ obeys
the rules of algebra. This is why we have ‘Boolean rings’. Further steps,
introducing quantifiers (‘for all’ and ‘there exists’) were taken by Charles
Sanders Peirce (1839–1914), but the most important work of this era is
Begriffsschrift of Friedrich Ludwig Gottlob Frege (1848–1925), which ap-
peared in 1879. ‘Begriffsschrift’ can be roughly translated as ‘the notation
of concepts’. Frege not only defined a complete logical language, but also
set out to develop mathematics in it. He abruptly abandoned the whole
project after Bertrand Russell (1872–1970) had pointed out an antinomy in
his work, but Russell himself continued it in Principia Mathematica (with
A.N. Whitehead).

By this time (around 1900), the developing field of Logic had captured
the attention of great mathematicians such as David Hilbert and Henri
Poincaré.

The idea that abstract mathematical statements (and therefore also the
‘sentences’ of a logical language) can be interpreted in various ‘models’,
certainly existed in the first decades of the 20th century (it is already implicit
in Lobachevsky’s 1826 proof of the independence of the parallel postulate in

37
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geometry), but most often, the formal definition of the notion ‘sentence φ
is true in model X’ is attributed to Alfred Tarski (1901–1983): see [26] for
the German translation of his original Polish paper.

Certainly, Tarski created Model Theory, of which you will get a first
glimpse in this chapter.

2.1 Rings and Orders: an Example

This section is meant to serve as introduction and motivation for the formal
definition of an abstract language in the next section.

When we say that the real numbers R form a commutative ring with
1, we mean that there are two distinguished elements 0 and 1, as well as
operations + and ·, such that certain axioms hold, for example:

x·(y + z) = (x·y) + (x·z)

This is to be read as: whenever real numbers are substituted for the variables
x, y and z, we get an equality as above.

We call the whole of {0, 1,+, ·} the ring structure of R. Now of course
you know there are plenty of other rings. For example, let X be any set.
The power set P(X) can be made into a commutative ring with 1: take
X for 1, ∅ for 0, and let for U, V ⊆ X, U + V = (U ∪ V ) − (U ∩ V ) and
U ·V = U ∩ V .

Exercise 39 Check that this indeed gives a ring structure on P(X).

The example of P(X) makes it clear that the operation + does not, a priori,
mean addition of numbers, but is an abstract symbol generally used for
the operation in abelian groups; we might as well have used something like
a(x, y) and m(x, y) instead of x + y and x·y, respectively, and written the
distributivity axiom as

m(x, a(y, z)) = a(m(x, y),m(x, z))

Similarly, one should regard 0 and 1 as abstract symbols that only acquire
meaning once they are interpreted in a particular set.

Many axioms for rings have a very simple form: they are equalities
between terms, where a term is an expression built up using variables, the
symbols 0 and 1, and the operation symbols +, · (and brackets). From simple
equalities we can form more involved statements using logical operations: the
operations ∧ (“and”), ∨ (“or”), → (“if. . . then”), ↔ (“if and only if”) and
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¬ (“not”); and quantifiers ∃ (“there is”) and ∀ (“for all”). For example, if
we want to express that R is in fact a field, we may write

∀x(¬(x = 0) → ∃y(x·y = 1))

or equivalently
∀x∃y(x = 0 ∨ x·y = 1)

We say that the statement ∀x∃y(x = 0 ∨ x·y = 1) “is true in R” (of course,
what we really mean is: in R together with the meaning of 0, 1,+, ·). Such
statements can be used to distinguish between various rings: for example,
the statement

∃x(x·x = 1 + 1)

is true in R but not in the ring Q, and the statement

∀x(x·x = x)

is true in the ring P(X) but not in R.

Apart from operations on a set, one may also consider certain relations. In
R we have the relation of order, expressed by x < y. As before, we might
have used a different symbol for this relation, for example L(x, y) (“x is less
than y”). And we can form statements using this new symbol together with
the old ones, for example

∀x∀y∀z(x < y → x+ z < y + z)

which is one of the axioms for an ordered ring. In R, the order relation is
definable from the ring structure, because the statement

∀x∀y(x < y ↔ ∃z(¬(z = 0) ∧ x+ z·z = y))

is true in R. However, this statement is not true in the ordered ring Q. Also
the ring P(X) is (partially) ordered by U ⊂ V ; in this ring, the order is
definable, but now in a different way:

∀x∀y(x < y ↔ (¬(x = y) ∧ x·y = x))

In yet another way, the order in Q is definable from the ring structure.
In this case, we use the theorem (first proved by Lagrange) which says that
every natural number may be written as the sum of four squares. Since every
positive rational number is the quotient of two positive natural numbers, we
have:

x > 0 ↔ ∃y1 · · · y8 (x·(y2
1 + · · · + y2

4 + 1) = y2
5 + · · · + y2

8 + 1)
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for all x ∈ Q. Since x < y is equivalent to ∃z(z > 0 ∧ x + z = y), we can
define the order on Q in terms of 0, + and · only.

We see that in general, when we wish to discuss a certain type of mathe-
matical structures, we choose symbols for the distinguished elements, the
operations and the relations which make up the structure, and using these
we write down statements. The use of such statements is varied: they may
be axioms, required to be true in all structures we wish to consider; they may
be true in some, but not in others; or they may be used to define elements
or subsets of a structure.

In Mathematical Logic, we study these statements, and their relation to
mathematical structures, formally; in order to do this, we define formal
statements as mathematical objects. This is done in the next section.

We shall see many examples of different types of structures in the coming
sections.

2.2 Languages of First Order Logic

This section is purely “linguistic” and introduces the formal languages for
first-order logic – or “predicate logic”.

Definition 2.2.1 A language L is given by three sets of symbols: constants,
function symbols and relation symbols. We may write

L = (con(L), fun(L), rel(L))

Moreover, for each function symbol f and each relation symbolR the number
n of arguments is specified, and called the arity of f (or R). If f or R has
arity n, we say that it is an n-ary (or n-place) function (relation) symbol.

For example, the language of rings has two constants, 0 and 1, and two 2-
place function symbols for addition and multiplication. There are no relation
symbols.

The language of orders has one 2-place relation symbol (S or <) for “less
than”.
Given such a language L, one can build terms (to denote elements) and
formulas (to state properties), using the following auxiliary symbols:

- A countably infinite set of variables. This set is usually left unspecified,
and its elements are denoted by x, y, z, . . . or x0, x1, . . .

- The equality symbol =
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- The symbol ⊥ (“absurdity”)

- Connectives: the symbols ∧ (“and”) for conjunction, ∨ (“or”) for dis-
junction, → (“if. . . then”) for implication and ¬ (“not”) for negation

- Quantifiers: the universal quantifier ∀ (“for all”) and the existential
quantifier ∃ (“there exists”)

- Some readability symbols, like the comma, and brackets.

Definition 2.2.2 The set of terms of a language L is inductively defined
as follows:

- any constant c of L is a term of L;

- any variable x is a term of L;

- if t1, . . . , tn is an n-tuple of terms of L and f is an n-place function
symbol of L, then f(t1, . . . , tn) is a term of L.

A term which does not contain variables (and hence is built up from con-
stants and function symbols alone) is called closed.

Examples

a) Suppose L has a constant c and a 2-place function symbol f . The
following are terms of L: x, y, c, f(x, c), f(f(x, c), c), . . .

b) Suppose L has no function symbols. The only terms are variables and
constants.

Definition 2.2.3 The set of formulas of a given language L is inductively
defined as follows:

- If t and s are terms of L, then (t = s) is a formula of L.

- If t1, . . . , tn is an n-tuple of terms of L and R is an n-place relation
symbol of L, then R(t1, . . . , tn) is a formula of L.

- ⊥ is a formula of L.

- If ϕ and ψ are formulas of L, then so are (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ)
and ¬ϕ.

- If ϕ is a formula of L, and x is a variable, then also ∀xϕ and ∃xϕ are
formulas of L.
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Remarks/Examples.

a) Given a language L, let V be the set of variables, and A the set of
auxiliary symbols that we have listed. Let S = L ∪ V ∪ A. Then
formally, terms of L and formulas of L are finite tuples of elements of
S.

b) However, the sets of terms of a language and of formulas of a language
have a more meaningful structure. Suppose t is a term. Then there
are three possibilities: t is a variable, t is a constant, or there is an
n-place function symbol f of L, and terms t1, . . . , tn, such that t =
f(t1, . . . , tn). The terms t1, . . . , tn have the property that each one
of them contains fewer function symbols of L than t. One uses this
to prove properties of terms “by induction on the number of function
symbols occurring in them”. Similarly, one can prove properties of
formulas by induction on the number of symbols from the set {∧,∨,→
,¬,∀,∃} in them. If this number is zero, we call the formula atomic.

c) The use of brackets and commas is only for the sake of readability
and to avoid ambiguity, such as ϕ ∨ ψ → χ. Outermost brackets are
usually omitted.

d) Suppose the language L has one constant c, one 2-place function sym-
bol f and one 3-place relation symbol R. Then

∀x∀yR(c, x, f(y, c))
∀x(x = f(x, x) → ∃yR(x, c, y))

R(f(x, f(c, f(y, c))), c, y) ∧ (x = y ∨ ¬R(c, c, x))

are formulas of L (note how we use the brackets!), but

∀R¬R(x, x, c)

isn’t (this might be called a “second order formula”; quantifying over
relations).

Free and bound variables. Roughly speaking, a variable which is “quan-
tified away” in a formula, is called bound in that formula; otherwise, it is
called free.

For example, in the formula

∀x(R(x, y) → ∃zP (x, z))
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the variables x and z are bound whereas y is free. The x in “∀x” is not
considered to be either free or bound, nor z in “∃z”.

The intuition is, that the formula above states a property of the variable
y but not of the variables x, z; it should mean the same thing as the formula

∀u(R(u, y) → ∃vP (u, v))

This is similar to the use of variables in expressions such as
∫ x

0 f(t)dt: this
expression is usually a function of x, not of t.

A formula with no free variables is called closed, or a sentence. Such a
formula should be thought of as an assertion.

It is an unfortunate consequence of the way we defined formulas, that
expressions like

∀x∀y∀xR(x, y)
∀y(R(x, y) → ∀xR(x, x))

are formulas. The first one has the strange property that the variable x
is bound twice; and the second one has the undesirable feature that the
variable x occurs both bound and free. In practice, we shall always stick to
the following

CONVENTION ON VARIABLES In formulas, a variable will always
be either bound or free but not both; and if it is bound, it is only bound
once

This convention is not meant to exclude formulas like ∀xP (x) ∨ ¬∀xP (x);
certainly one can argue that the ‘same’ variable (namely, x) is ‘bound twice’;
but in fact every occurrence of the variable is only bound once. However,
in the case of ∀x(P (x) ∨ ¬∀xP (x)) we shall rather use the equivalent form
∀x(P (x) ∨ ¬∀yP (y)).

Definition 2.2.4 (Substitution) Suppose ϕ is a formula of L, and t a
term of L. By the substitution ϕ[t/x] we mean the formula which results
by replacing each occurrence of the variable x by the term t, provided x is
a free variable in ϕ, and no variable in the term t becomes bound in ϕ (in
this definition, the Convention on variables is in force!).

Examples. Suppose ϕ is the formula ∀xR(x, y). If t is the term f(u, v),
then ϕ[t/x] is just ϕ, since x is bound in ϕ; ϕ[t/y] is ∀xR(x, f(u, v)).

Suppose t is the term f(x, y). Now the substitution ϕ[t/y] presents us
with a problem; if we carry out the replacement of y by t we get ∀xR(x, f(x, y)),
which intuitively does not “mean” that the property expressed by ϕ, holds
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for the element denoted by t! Therefore, we say that the substitution is not
defined in this case. In practice though, as said before, we shall consider ϕ
as the “same” formula as ∀uR(u, y), and now the substitution makes sense:
we get ∀uR(u, f(x, y)).

If the term t is closed (in particular, if t is a constant), the substitution
ϕ[t/x] is always defined, as is easy to see.

First order logic and other kinds of logic. In these lecture notes, we
shall limit ourselves to the study of “first order logic”, which is the study
of the formal languages and formulas as we have described here, and their
relation to structures, as we will see in the next section.

This logic has good mathematical properties, but it has also severe limi-
tations. Our variables denote, as we shall see, elements of structures. So we
can only say things about all elements of a structure, not about all subsets,
or about sequences of elements. For example, consider the language of or-
ders: we have a 2-place relation symbol < for “less than”. We can express
that < really is a partial order:

(∀x¬(x < x)) ∧ (∀x∀y∀z((x < y ∧ y < z) → x < z))

and that < is a linear order:

∀x∀y(x < y ∨ x = y ∨ y < x)

but we can not express that < is a well-order, since for that we have to say
something about all subsets (we shall return to this example in Exercise 60).

It is possible to consider logics where such statements can be formed:
these are called “higher order” logics. There are also logics in which it is
possible to form the conjunction, or disjunction, of an infinite set of formulas
(so, formulas will be infinite objects in such a logic).

2.3 Structures for first order logic

In this section we consider a fixed but arbitrary first order language L, and
discuss what it means to have a structure for L.

Definition 2.3.1 An L-structure M consists of a nonempty set, also de-
noted M , together with the following data:

- for each constant c of L, an element cM of M ;

- for each n-place function symbol f of L, a function

fM : Mn →M
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- for each n-place relation symbol R of L, a subset

RM ⊆Mn

We call the element cM the interpretation of c in M , and similarly, fM and
RM are called the interpretations of f and R, respectively.

Given an L-structure M , we consider the language LM (the language
of the structure M): LM is L together with, for each element m of M , an
extra constant (also denoted m). Here it is assumed that con(L) ∩M = ∅.
If we stipulate that the interpretation in M of each new constant m is the
element m, then M is also an LM -structure.

Definition 2.3.2 (Interpretation of terms) For each closed term t of
the language LM , we define its interpretation tM as element of M , by in-
duction on t, as follows. If t is a constant, then its interpretation is already
defined since M is an LM -structure. If t is of the form f(t1, . . . , tn) then
also t1, . . . , tn are closed terms of LM , so by induction hypothesis their in-
terpretations tM1 , . . . , t

M
n have already been defined; we put

tM = fM(tM1 , . . . , t
M
n )

Next, we define for a closed formula ϕ of LM what it means that “ϕ is true
in M” (other ways of saying this, are: ϕ holds in M , or M satisfies ϕ).
Notation:

M |= ϕ

Definition 2.3.3 (Interpretation of formulas) For a closed formula ϕ
of LM , the relation M |= ϕ is defined by induction on ϕ:

- If ϕ is an atomic formula, it is equal to ⊥, of the form (t1 = t2), or of
the form R(t1, . . . , tn) with t1, t2, . . . , tn closed terms; define:

M |= ⊥ never holds
M |= (t1 = t2) iff tM1 = tM2

M |= R(t1, . . . , tn) iff (tM1 , . . . , t
M
n ) ∈ RM

where the tMi are the interpretations of the terms according to defini-
tion 2.3.2, and RM the interpretation of R in the structure M .

- If ϕ is of the form (ϕ1 ∧ ϕ2) define

M |= ϕ iff M |= ϕ1 and M |= ϕ2
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- If ϕ is of the form (ϕ1 ∨ ϕ2) define

M |= ϕ iff M |= ϕ1 or M |= ϕ2

(the “or” is to be read as inclusive: as either. . . or, or both)

- If ϕ is of the form (ϕ1 → ϕ2) define

M |= ϕ iff M |= ϕ2 whenever M |= ϕ1

- If ϕ is of the form (¬ψ) define

M |= ϕ iff M 6|= ψ

(here 6|= means “not |=”)

- If ϕ is of the form ∀xψ define

M |= ϕ iff M |= ψ[m/x] for all m ∈M

- If ϕ is of the form ∃xψ define

M |= ϕ iff M |= ψ[m/x] for some m ∈M

(in the last two clauses, ψ[m/x] results by substitution of the new
constant m for x in ψ)

In a way, this truth definition 2.3.3 simply translates the formulas of LM
(and hence, of L) into ordinary language. For example, if R is a binary (2-
place) relation symbol of L and M is an L-structure, then M |= ∀x∃yR(x, y)
if and only if for each m ∈ M there is an n ∈ M such that (m,n) ∈ RM ;
that is, RM contains the graph of a function M →M .

2.3.1 Validity and Equivalence of Formulas

The symbol ↔ is usually treated as an abbreviation: ϕ ↔ ψ abbreviates
(ϕ → ψ) ∧ (ψ → ϕ). So, M |= ϕ ↔ ψ if and only if the two statements
M |= ϕ and M |= ψ are either both true or both false. We call the formulas
ϕ and ψ (logically) equivalent if this is the case for all M .

Note, that the closed formula ∃x(x = x) is always true, in every structure
(this is a formula of every language!), since structures are required to be
nonempty. In general, if ϕ is a formula in a language L such that for every
L-structure M and every substitution of constants from M for the free
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variables of ϕ, M |= ϕ, then ϕ is called valid. So, ϕ and ψ are equivalent
formulas, if and only if the formula

ϕ↔ ψ

is valid.
The next couple of exercises provide you with a number of useful equiv-

alences between formulas.

Exercise 40 Show that the following formulas are valid:

ϕ↔ ¬¬ϕ
¬ϕ↔ (ϕ→ ⊥)
(ϕ→ ψ) ↔ (¬ϕ ∨ ψ)
(ϕ ∨ ψ) ↔ ¬(¬ϕ ∧ ¬ψ)
(ϕ ∧ ψ) ↔ ¬(¬ϕ ∨ ¬ψ)
∃xϕ↔ ¬∀x¬ϕ
∀xϕ↔ ¬∃x¬ϕ

The equivalences ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ) and ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ)
are called De Morgan’s Laws.

(ϕ ∧ (ψ ∨ χ)) ↔ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
(ϕ ∨ (ψ ∧ χ)) ↔ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))
(ϕ→ (ψ ∨ χ)) ↔ ((ϕ→ ψ) ∨ (ϕ→ χ))
(ϕ→ (ψ ∧ χ)) ↔ ((ϕ→ ψ) ∧ (ϕ→ χ))

In the following, assume that x does not occur in ϕ
(ϕ→ ∃xψ) ↔ ∃x(ϕ→ ψ)
(∃xψ → ϕ) ↔ ∀x(ψ → ϕ)
(∀xψ → ϕ) ↔ ∃x(ψ → ϕ)

Check for yourself that a formula like ∃xϕ ↔ ¬∀x¬ϕ does not violate
our Convention on Variables!

Exercise 41 Show by counterexamples that the following sentences are not
valid:

∃v(φ(v) → ψ) → (∃vφ(v) → ψ)
((∀xφ(x)) → ψ) → ∀x(φ(x) → ψ)

Exercise 42 Prove that for every formula ϕ, ϕ is equivalent to a formula
which starts with a string of quantifiers, followed by a formula in which no
quantifiers occur. Such a formula is called in prenex normal form.
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Exercise 43 a) Let ϕ be a formula in which no quantifiers occur. Show
that ϕ is logically equivalent to a formula of the form:

ψ1 ∨ · · · ∨ ψk

where each ψi is a conjunction of atomic formulas and negations of
atomic formulas. This form is called a disjunctive normal form for ϕ.

b) Let ϕ be as in a); show that ϕ is also equivalent to a formula of the
form

ψ1 ∧ · · · ∧ ψk
where each ψi is a disjunction of atomic formulas and negations of
atomic formulas. This form is called a conjunctive normal form for ϕ.

In the following exercises you are asked to give L-sentences which “express”
certain properties of structures. This means: give an L-sentence φ such that
for every L-structure M it holds that M |= φ if and only if the structure M
has the given property.

Exercise 44 Let L be the empty language. An L-structure is “just” a
nonempty set M .
Express by means of an L-sentence that M has exactly 4 elements.

Exercise 45 Let L be a language with one 2-place relation symbol R. Give
L-sentences which express:

a) R is an equivalence relation.

b) There are exactly 2 equivalence classes.

[That is, e.g. for a): M |= φ if and only if RM is an equivalence relation on
M , etc.]

Exercise 46 Let L be a language with just one 1-place function symbol F .
Give an L-sentence φ which expresses that F is a bijective function.

Exercise 47 Let L be the language with just the 2-place function symbol
·. We consider the L-structures Z and Q where · is interpreted as ordinary
multiplication.

a) “Define” the numbers 0 and 1. That is, give L-formulas ϕ0(x) and
ϕ1(x) with one free variable x, such that in both Q and Z, ϕi(a) is
true exactly when a = i (i = 0, 1).
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b) Give an L-sentence which is true in Z but not in Q.

Exercise 48 Let L be the language {f, g} where f is a 2-place function
symbol and g a 1-place function symbol. Consider the L-structure M , with
underlying set R, fM is multiplication on R, and gM is the sine function.
Give an L-formula φ(x) with one free variable x, such that for all a ∈ R the
following holds:

M |= φ(a) ⇔ there is an n ∈ N such that a = (2n+
1

2
)π

Exercise 49 Let L = {≤} be the language of posets; here ≤ is a 2-place
relation symbol (and we naturally write x ≤ y instead of ≤ (x, y)). So a
poset is nothing but an L-structure which satisfies the following L-sentences:

∀x(x ≤ x)
∀x∀y∀z((x ≤ y ∧ y ≤ z) → x ≤ z)
∀x∀y((x ≤ y ∧ y ≤ x) → x = y)

Suppose M is a well-order, seen as L-structure. Give an L-formula φ(x) in
one free variable, such that for every a ∈M the following holds:

M |= φ(a) ⇔ a is a limit element

2.4 Examples of languages and structures

2.4.1 Graphs

A directed graph is a structure with vertices (points) and edges (arrows)
between them, such as:

•

�� ��
@@

@@
@@

@ •

�� ��
@@

@@
@@

@ •

�� !!B
BB

BB
BB

B
. . .

• • • . . .

The language Lgraph of directed graphs has two 1-place relation symbols, E
and V (for “edge” and “vertex”), and two 2-place relation symbols S and T
(for “source” and “target”; S(x, y) will mean “the vertex x is the source of
the edge y”).
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An Lgraph-structure is a nonempty set G together with two subsets
EG, V G of G, and two subsets SG, TG of G2. G is a directed graph pre-
cisely when G satisfies the following ‘axioms’ for directed graphs:

∀x(E(x) ∨ V (x)) ∀x¬(E(x) ∧ V (x))
∀x∀y(S(x, y) → (V (x) ∧E(y))) ∀x∀y(T (x, y) → (V (x) ∧ E(y)))
∀x∀y∀z((S(x, z) ∧ S(y, z)) → x = y) ∀x∀y∀z((T (x, z) ∧ T (y, z)) → x = y)
∀z(E(z) → ∃x∃y(S(x, z) ∧ T (y, z)))

2.4.2 Local Rings

The language Lrings of rings has constants 0 and 1, two 2-place function
symbols for multiplication and addition, denoted · and +. There are no
relation symbols.

A commutative ring with 1 is an Lrings-structure which satisfies the ax-
ioms for commutative rings with 1:

∀x(x+ 0 = x) ∀x(x·1 = x)
∀xy(x+ y = y + x) ∀xy(x·y = y·x)
∀xyz(x+ (y + z) = (x+ y) + z) ∀xyz(x·(y·z) = (x·y)·z)
∀x∃y(x+ y = 0) ∀xyz(x·(y + z) = x·y + x·z)

(We have started to abbreviate a string of quantifiers of the same kind:
instead of ∀x∀y write ∀xy)

A local ring is a commutative ring with 1 which has exactly one maximal
ideal. This is a condition that involves quantifying over subsets (ideals) of
the ring, and cannot be formulated in first order logic. However, one can
show that a commutative ring with 1 is local, precisely when for each pair
of elements x, y it holds that if x+ y is a unit, then either x or y must be a
unit. That is, a commutative ring R with 1 is local, if and only if

R |= ∀xy(∃z(z·(x+ y) = 1) → (∃v(v·x = 1) ∨ ∃w(w·y = 1)))

Exercise 50 Let L be Lrings together with an extra 1-place relation symbol
I. Give L-formulas which express that the subset defined by I is:

a) an ideal;

b) a prime ideal;

c) a maximal ideal.
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2.4.3 Vector Spaces

Fix a field k. We can write down a language Lk of first order logic, and
axioms in this language, such that the Lk-structures which satisfy the axioms
are precisely the k-vector spaces.

The language Lk has a constant 0 and a binary function symbol + to
describe the abelian group structure. Furthermore, it has a 1-place function
symbol fm for every element m of k, to describe scalar multiplication. Apart
from the axioms for an abelian group (which are the left side of the axioms
for rings given above), there are the axioms:

fm(0) = 0 ∀xy(fm(x+ y) = fm(x) + fm(y))
∀x(f1(x) = x) ∀x(fm(fm′(x)) = fmm′(x))
∀x(fm+m′(x) = fm(x) + fm′(x)) ∀x (f0(x) = 0)

In the second line of these axioms, 1 is the unit of the field k, and mm′

refers to multiplication in k. In the third line, m+ m′ refers to addition in
k, and the 0 in f0(x) is the 0 in k. Note, that if the field k is infinite, there
are infinitely many axioms to satisfy!

Exercise 51 The language Lk and the axioms for vector spaces given above,
are not very satisfactory in the sense that there are many important things
about vectors that cannot be expressed by Lk-formulas; for example, that x
and y are linearly independent vectors.

Devise yourself a different language and different axioms which do allow
you to express that two vectors are linearly independent over k. Mimicking
the example of graphs, have two 1-place relation symbols S and V (for
“scalar” and “vector” respectively). How do you express addition of vectors
and scalar multiplication?

2.4.4 Basic Plane Geometry

The language Lgeom of basic plane geometry has two 1-place relation symbols
P and L for “point” and “line”, and a 2-place relation symbol I for “point
x lies on line y”. The axioms are:

∀x(P (x) ∨ L(x))
∀x¬(P (x) ∧ L(x))
∀xy(I(x, y) → (P (x) ∧ L(y)))
∀xx′(P (x) ∧ P (x′) → ∃y(I(x, y) ∧ I(x′, y)))
∀xx′yy′((I(x, y) ∧ I(x′, y) ∧ I(x, y′) ∧ I(x′, y′)) → (x = x′ ∨ y = y′))
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Convince yourself that these axioms mean: everything is either a point or a
line (and not both), for every two points there is a line they lie on, and two
distinct lines can have at most one point in common.

Exercise 52 A famous extra axiom says, that for every line l and point
x not on l, there is a unique line m through x, which does not intersect l.
Show how to express this axiom in Lgeom.

2.5 The Compactness Theorem

Before we can state the main theorem of this section, we first discuss some
abstract general notions concerning first order languages and structures.

Let L be a language. A theory in L (or L-theory) is simply a set of L-
sentences (closed formulas). Usually this is a set of axioms for a meaningful
mathematical theory, such as the axioms for local rings.

If T is an L-theory, an L-structure M is called a model of T if every
sentence in T is true in M ; in other words, if

M |= ϕ

for every ϕ ∈ T . We shall also write M |= T in this case. So, a local ring is
the same thing as a model of the theory of local rings, etc.

Usually, if T is a theory, there will be sentences which are true in every
model of T : the consequences of the axioms. We write T |= ϕ to mean: ϕ
holds in every model of T .

A theory T need not have models; T is said to be consistent if T has a
model. The antonym is inconsistent.

Exercise 53 If T is inconsistent, T |= ϕ holds for every L-sentence ϕ. Show
also, that T |= ϕ if and only if T ∪ {¬ϕ} is inconsistent.

Clearly, every model of T is also a model of every subtheory T ′ ⊆ T ; so
if T is consistent, so is T ′. The following important theorem says, that in
order to check whether a theory T is consistent, one only needs to look at
its finite subtheories:

Theorem 2.5.1 (Compactness Theorem; Gödel 1929) Let T be a the-
ory in a language L. If every finite T ′ ⊆ T is consistent, then so is T .

We will not prove Theorem 2.5.1 here, because it is a consequence of the
Completeness Theorem (Theorem 3.2.2), which is proved in Chapter 3.
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Exercise 54 Use the Compactness Theorem to show: if T |= ϕ then there
is a finite subtheory T ′ ⊆ T such that T ′ |= ϕ.

The Compactness Theorem can be used to explore the boundaries of
what can be expressed using first order logic. Here are a few examples.

Example 1. Consider the empty language L: no constants, function sym-
bols or relation symbols. An L-structure is nothing but a nonempty set.
Still, there are meaningful L-sentences; for example the sentence

∀xyz(x = y ∨ x = z ∨ y = z)

will be true in a set S if and only if S has at most two elements. Likewise,
there is for any natural number n ≥ 1 a sentence φn, such that φn is true in
S if and only if S has at most n elements.

Exercise 55 Prove this.

Consequently, if T is the theory {¬φn |n ≥ 1}, then S is a model of T if and
only if S is infinite.

In contrast, there is no theory T such that S is a model of T if and only if
S is finite. This can be proved with the help of the Compactness Theorem.
For, suppose that such a theory T exists. Consider then the theory

T ′ = T ∪ {¬φn |n ≥ 1}

A model S of T ′ must be finite, since S is a model of T , yet it must have,
for each n ≥ 1, at least n + 1 elements since S |= ¬φn. Clearly, this is
impossible, so T ′ has no models.

But now by the Compactness Theorem, there must be a finite subtheory
T ′′ ⊆ T ′ such that T ′′ has no models. Consider such T ′′. Then for some
k ∈ N we must have that

T ′′ ⊆ T ∪ {¬φn | 1 ≤ n ≤ k}

But any finite set with at least k + 1 elements is a model of T ∪ {¬φn | 1 ≤
n ≤ k}, hence of T ′′. We have obtained a contradiction, showing that the
assumed theory T does not exist.

Exercise 56 Conclude from this reasoning, that there cannot be a single
sentence φ in the empty language, such that φ is true in a set S precisely
when S is infinite.
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Example 2. The language Lgrp of groups has one constant e and one 2-place
function symbol ·. The theory Tgrp of groups consists of the sentences:

∀x(e·x = x) ∀x(x·e = x)
∀xyz(x·(y·z) = (x·y)·z) ∀x∃y(x·y = e ∧ y·x = e)

A group is nothing but an Lgrp-structure which is a model of Tgrp. Given a
group G, an element g is said to have finite order, if for some n, gn = g· . . . ·g

︸ ︷︷ ︸

n

is the unit element of the group. The least such n is in this case called the
order of g.

For each n ≥ 2, there is a sentence φn of Lgrp such that for any group
G it holds that G |= φn if and only if G has no elements whose order is a
divisor of n:

∀x(x· . . . ·x
︸ ︷︷ ︸

n

= e→ x = e)

Therefore, in complete analogy to the case with sets as structures for the
empty language (Example 1), there is a theory T , with Tgrp ⊆ T , such that
the models of T are precisely the groups which do not contain elements with
finite order (such as the group Z).

And again, in contrast there is no theory T such that its models are
precisely the groups which do contain elements of finite order. This is proved,
using the Compactness Theorem, in a way completely analogous to Example
1, and therefore left as an exercise:

Exercise 57 Carry out the proof of the statement above.

There are many variations on Example 2. We mention one in the following
exercise.

Exercise 58 Consider the language Lgraph of directed graphs.

a) Show that for each n ≥ 1 there is an Lgraph-sentence φn which is true
in a graph G exactly when G has no cycles of length n.

b) Show that there is no theory T in Lgraph such that the models of T
are precisely the graphs which contain cycles.

c) Show that there is no finite theory T in the language Lgraph such that
the models of T are precisely the graphs which have no cycles.
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Example 3. This and the next example illustrate another use of the Com-
pactness Theorem: it can be used to show the existence of new models of
certain theories. Technically, this example is a little different from the first
two in that it uses an extension of the language by a constant.

The theory PA of Peano Arithmetic describes the basic structure of the
natural numbers. The language has two constants 0 and 1 and two binary
function symbols + and ·, and is therefore the same as the language for
rings. PA has the following axioms:

∀x¬(x+ 1 = 0) ∀xy(x+ 1 = y + 1 → x = y)
∀x(x+ 0 = x) ∀x(x·0 = 0)
∀xy(x+ (y + 1) = (x+ y) + 1) ∀xy(x·(y + 1) = x·y + x)

but, in addition, there are the so-called induction axioms. Suppose ϕ con-
tains the free variables x, y1, . . . yn and does not contain the variable u; then
the following is an axiom of PA:

∀y1 · · · yn((ϕ[0/x] ∧ ∀x(ϕ→ ϕ[x+ 1/x])) → ∀uϕ[u/x])

PA is a consistent theory, for the ordinary set N of natural numbers, with
the ordinary 0, 1,+, · is a model of PA.

However, there are other models of PA. This can be seen with the help of
the Compactness Theorem: consider the language L, which is the language
of PA together with one extra constant c. Let T be the L-theory which has
all the axioms of PA, and moreover all the axioms:

¬(c = 0)
¬(c = 1)

¬(c = 1 + 1)
¬(c = (1 + 1) + 1)

...

Suppose T ′ is a finite subtheory of T . Then T ′ contains only finitely many
of these new axioms. Therefore, we can always make N into an L-structure
which is a model of T ′, by picking a natural number for the interpretation
of the constant c which is large enough.

Therefore, every finite subtheory T ′ of T is consistent; by the Com-
pactness Theorem, T is consistent. So T has a model M . Then M is, in
particular, a model of PA. One can show that in every model of PA, the
interpretations of the closed terms

0, 1, 1 + 1, (1 + 1) + 1, ((1 + 1) + 1) + 1, . . .
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are all distinct, so there is an injective function from N into M . Moreover, in
M there is the element cM which, since M is a model of T , must be distinct
from 0M , 1M , (1 + 1)M , . . .

The element cM is called a nonstandard number and M is a nonstandard
model.

Exercise 59

a) Prove that PA |= ∀x(x = 0 ∨ ∃y(x = y + 1))

b) Let M be a nonstandard model of PA. Prove that M contains an
infinite descending chain: there are elements c0, c1, . . . in M such that
c0 > c1 > · · ·

The theory of models of PA is very interesting from the point of view
of Model Theory, and also from the point of view of Gödel’s famous Incom-
pleteness Theorems. The book [17] gives an account of the model theory of
PA; for an elementary exposition of the Incompleteness Theorems, see [24].

Another variation on the theme of the Compactness Theorem concerns well-
orders.

Exercise 60 Let L be the language of orders, with just a 2-place relation
symbol < for “less than”.

a) Give an L-sentence φ such that the models of φ are precisely the linear
orders.

b) Show that there is no L-theory T such that the models of T are pre-
cisely the well-ordered sets.

[Hint: Suppose that such a theory T exists. Let L′ be the language
obtained from L by adding infinitely many new constants c1, c2, . . ..
Let T ′ be the L′-theory which contains T and a set of sentences saying
that “c1 > c2 > · · · is an infinite descending chain” (recall Proposi-
tion 1.3.2). Use the Compactness Theorem to obtain a contradiction]

c) Use the technique of part b) (and the Hint there) to prove that for
every infinite well-order M there is an L-structure M ′ such that the
following hold:

i) M and M ′ satisfy the same L-sentences

ii) M ′ is not a well-order
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Example 4. Consider the following language: the language LR which has a
constant r for every real number r, an n-place function symbol f for every
function f : Rn → R, and an n-place relation symbol R for every subset
R ⊆ Rn.

Clearly, interpreting everything by itself, R is an LR-structure. Let TR

be the set of all LR-sentences φ such that R |= φ. Then R is a model of TR.

Now just as in the previous example, we form a new language L out of
LR by adding one extra constant c, and we let T be the union of TR with
the set of new axioms:

{c > n |n ∈ N}
And just as in the previous example, we see that every finite subtheory of
T is consistent. Therefore by the Compactness Theorem, T has a model R.

R is a model of TR, and there is an embedding of R into R; but moreover,
R contains the “infinite” element cR. R is a field, because the axioms for a
field are true in R and hence form part of TR. Let d ∈ R be the multiplicative
inverse of cR. Then in R, d is greater than 0, yet it is smaller than 1

n
for

each n! d is called a nonstandard element. We say that R is a model for
nonstandard analysis.

Using a model for nonstandard analysis allows one to define concepts
of ordinary analysis without using the usual ε-δ definitions. For example,
a function f : R → R is continuous at x ∈ R if and only if for each
nonstandard element d, the element |f(x+d)−f(x)| is at most nonstandard.

Moreover, a nonstandard element d is thought of as an “infinitesimal”
element, and in a model of nonstandard analysis, the differential quotient
df
dx is a “real” quotient (instead of a limit): one says that the function f is
differentiable at x if and only if for any two nonstandard elements d and d′,

the expressions f(x+d)−f(x)
d

and f(x+d′)−f(x)
d′

differ by at most a nonstandard
element.

Nonstandard Analysis, originating in Logic and first developed by Abra-
ham Robinson (see [22]), has developed into a subfield of Analysis; for a
more recent introduction, see e.g. [12].

Here are some more exercises about the Compactness Theorem.

Exercise 61 For sets X, let us write ‘|X| is divisible by 3’ if either |X| is
finite and divisible by 3, or X is infinite. Prove that there is no sentence φ
in the empty language, which expresses this property. [Hint: suppose such
a sentence φ existed. Consider ¬φ]

Exercise 62 Let L be an arbitrary language. A class M of L-structures
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is called elementary if there is an L-theory T such that M is precisely the
class of all models of T .

Suppose, that for such a class M we have that both M and its comple-
ment are elementary. Prove that there is an L-sentence φ such that M is
precisely the class of all L-structures which satisfy φ.

Exercise 63 In this exercise we use the Compactness theorem to prove that
every set X admits a linear order (that is, there is a linear order on X).

a) First prove this for every finite X, by induction on |X|.

b) Now let X be arbitrary. Let L be the language with one 2-place
relation symbol < and constants {cx |x ∈ X}. The L-theory T has
the following axioms:

∀x¬(x < x)
∀x∀y∀z((x < y ∧ y < z) → x < z)

∀x∀y(x < y ∨ x = y ∨ y < x)
¬(cx = cy) for every pair x 6= y of elements of X

Prove, using the Compactness Theorem, that T is consistent.

c) Let M be a model of T . Show that M induces a linear order on X.

Exercise 64 Let L be the language of rings and φ an L-sentence. Suppose
that for every natural number n there is a prime number p > n and a field
F of characteristic p, such that F |= φ. Show that there is a field K of
characteristic 0 such that K |= φ.

Exercise 65 (De Bruijn-Erdös) The result to be proved in this exercise
was first published in [7]; evidently, the authors were unaware of the force
of the Compactness Theorem at the time.
We consider simple undirected graphs: a simple undirected graph has edges
just as the directed graphs of subsection 2.4.1, but now the edges have no
direction. Moreover, a graph is simple if for any two vertices, there is at
most one edge between them. In other words, a simple undirected graph is
just a set with a symmetric binary relation.
Let (X,R) be such a simple undirected graph, and k a positive integer. A
k-colouring of (X,R) is a function f from X to the set {1, . . . , k} such that
whenever x, y ∈ X and R(x, y) holds, f(x) 6= f(y) (note, that this implies
that the relation R is irreflexive).
Prove (using the Compactness Theorem) the following statement: if every
finite subgraph of (X,R) has a k-colouring, then (X,R) has a k-colouring.
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2.6 Substructures and Elementary Substructures

Definition 2.6.1 (Isomorphism of L-structures) Let M and N be L-
structures. An isomorphism from M to N is a bijective function β : M → N
such that the following hold:

i) β(cM ) = cN for every constant c of L;

ii) β(fM (x1, . . . , xn)) = fN (β(x1), . . . , β(xn)) for every n-place function
symbol f of L and every x1, . . . , xn ∈M ;

iii) (x1, . . . , xn) ∈ RM ⇔ (β(x1), . . . , β(xn)) ∈ RN for every n-place rela-
tion symbol of L and x1, . . . , xn ∈M .

We say that M and N are isomorphic if there is an isomorphism β : M → N .

It is easy to see that if β : M → N is an isomorphism then so is β−1 : N →
M , so the relation of being isomorphic is symmetric.

Exercise 66 Let ϕ(y1, . . . , yn) be an L-formula and x1, . . . , xn ∈ M . Sup-
pose β : M → N is an isomorphism. Show that M |= ϕ(x1, . . . , xn) if and
only if N |= ϕ(β(x1), . . . , β(xn)). Conclude that isomorphic L-structures
satisfy the same L-sentences.

Exercise 67 For a field k, let Lk be the language of k-vector spaces. Show
that for k-vector spaces M and N , an Lk-isomorphism from M to N is the
same thing as a bijective k-linear map. Show also that for two rings R and S,
an Lrings-isomorphism from R to S is the same thing as a ring isomorphism.
The same holds for graphs, groups, posets, etcetera.

Definition 2.6.2 Let M and N be structures for a language L. We say
that N is a substructure of M , and write N ⊆ M , if N is a subset of M ,
and the following conditions are satisfied:

- cN = cM for every constant c of L;

- fN : Nn → N is the restriction of fM to Nn for every n-place function
symbol of L (this means that for all x1, . . . , xn ∈ N , fM(x1, . . . , xn) is
an element of N , and equal to fN (x1, . . . , xn));

- RN = RM ∩Nn for every n-place relation symbol R of L (this means
that for x1, . . . , xn ∈ N , (x1, . . . , xn) ∈ RM if and only if (x1, . . . , xn) ∈
RN ).
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When we are considering models M , N of an L-theory T , we also say that
N is a submodel of M if N is a substructure of M .

Exercise 68 Let N ⊆M be a substructure. Show that for every quantifier-
free L-formula (that is, a formula without quantifiers) ϕ with variables
x1, . . . , xn and for every n-tuple m1, . . . ,mn of elements of N , we have

N |= ϕ(m1, . . . ,mn) if and only if M |= ϕ(m1, . . . ,mn)

Exercise 69 Let N be an L-structure. The diagram of N , D(N), is the set
of all quantifier-free LN -sentences which are true in N .

a) Suppose M is a model of D(N). Show that M has a substructure
which is isomorphic to N .

b) Conversely, suppose that M is an L-structure such that N is isomor-
phic to a submodel of M . Show that M can be made into an LN -
structure which is a model of D(N).

If M is an L-structure and N ⊆ M is a nonempty subset which contains
all the elements cM and is closed under the functions fM , there is a unique
way of making N into a substructure of M , by defining

RN = RM ∩Nn

for each n-place relation symbol R of L. Therefore, we shall sometimes refer
to the substructure determined by N , also by N .

Now suppose {Ni | i ∈ I} is a family of subsets of M such that each Ni

contains all the constants cM and is closed under the functions fM . Then
this also holds for the intersection

⋂

i∈I Ni. Therefore, if M is an L-structure
and S is an arbitrary subset of M , there is a least substructure of M which
contains S as a subset; we shall call this the substructure generated by S.

Exercise 70 a) Show that the substructure generated by S can also be
constructed as the union of a chain of subsets of M , as follows. Let
S0 be the union of S and the set {cM | c a constant of L}. Suppose
S ⊆ S0 ⊆ S1 ⊆ · · · ⊆ Sk have been constructed; let Sk+1 be the union
of Sk and the set

{fM (x1, . . . , xn) | f an n-place function symbol of L, x1, . . . , xn ∈ Sk}

b) Conclude that if the language L is countable and S is countable, the
substructure generated by S is countable too.



2.6. SUBSTRUCTURES AND ELEMENTARY SUBSTRUCTURES 61

c) More directly, the substructure generated by S is the set

{tM (s1, . . . , sn) | t an L-term, s1, . . . , sn ∈ S}

Definition 2.6.3 A substructure N ⊆M is called an elementary substruc-
ture, written N � M , if the equivalence of Exercise 68 holds for all L-
formulas ϕ. Equivalently, if for every sentence ϕ of LN ,

N |= ϕ if and only if M |= ϕ

The notation N � M should not be confused with the same notation for
embeddings between well-orders in Chapter 1.
The notion of “elementary substructure” means that, from the point of view
of L, the elements of N have the same properties in N as in M . For example,
consider Q ⊆ R as a subring. Then this is not an elementary substructure,
for 2 is a square in R but not in Q. However, if we consider Q and R just
as ordered structures (as structures for the language with just one binary
relation symbol <), then Q is an elementary substructure of R. We shall not
prove this last fact here, but anticipating some definitions yet to come, we
point out that the so-called theory of dense linear orders without end-points
(see Definition 2.9.4 at the end of this chapter), of which both Q and R are
models, has quantifier elimination (see the definition at the beginning of the
next section). Hence the statement follows from exercise 73 below.

Exercise 71 Suppose N is an L-structure. The elementary diagram of N ,
E(N), is the set of all LN -sentences which are true in N . In analogy to
Exercise 69, prove the following:

a) Suppose M is a model of E(N). Show that M has an elementary
substructure which is isomorphic to N .

b) Conversely, suppose that M is an L-structure such that N is isomor-
phic to an elementary submodel of M . Show that M can be made into
an LN -structure which is a model of E(N).

The theory E(N) is called the elementary diagram of N , and in the
literature often denoted by Diagel(N).

Exercise 72 (Tarski-Vaught Test) SupposeN ⊆M is an L-substructure.
Show that N � M if and only if the following condition holds: for every
LN -sentence of the form ∃xϕ which is true in M , there exists an m ∈ N
such that M |= ϕ[m/x].
[Hint: use induction on LN -sentences. Convince yourself that it suffices to
consider the cases ∃, ∧ and ¬]
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Note, that if N � M then both structures satisfy in particular the same
L-sentences; hence for every L-theory T , N is a model of T if and only if M
is.

2.7 Quantifier Elimination

Let T be a theory in a language L. We say that T admits elimination of
quantifiers, or has quantifier elimination if for every L-formula ϕ with free
variables x1, . . . , xn there is a quantifier-free L-formula ψ with at most the
free variables x1, . . . , xn, such that

T |= ∀x1 · · · xn(ϕ↔ ψ)

We also say that ϕ and ψ are T -equivalent.

In particular, if ϕ is a sentence, there will be a quantifier-free L-sentence
ψ such that T |= ϕ↔ ψ.

Exercise 73 Suppose the theory T admits elimination of quantifiers. Then
if N ⊆M is a substructure and N and M are models of T , N is an elemen-
tary substructure of M .

Applications of quantifier elimination often concern completeness of the
theory T . We say that a theory T is complete if for every L-sentence ϕ,
either T |= ϕ or T |= ¬ϕ holds. Clearly, if T admits quantifier elimination,
then this has only to be checked for quantifier-free L-sentences.

Exercise 74 Show that T is complete if and only if any two models of T
satisfy the same L-sentences.

The following lemma says that in order to check whether T has quanti-
fier elimination, we may restrict ourselves to very simple formulas. Call a
formula simple if it is of the form

∃x(ψ1 ∧ · · · ∧ ψn ∧ ¬χ1 ∧ · · · ∧ ¬χm)

where ψ1, . . . , ψn, χ1, . . . , χm are atomic formulas.

Lemma 2.7.1 T admits elimination of quantifiers if and only if every sim-
ple formula is T -equivalent to a quantifier-free formula in at most the same
free variables.
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Proof. Clearly, the given condition is necessary; to see that it is also suffi-
cient, we argue by induction on ϕ to show that every ϕ is T -equivalent to a
quantifier-free formula.

This is plainly true for atomic ϕ, and it is left to you to see that the
set of formulas which are T -equivalent to a quantifier-free formula, is closed
under the operations ∧, ∨, → and ¬.

For the quantifier case, we use Exercise 43 which states that every
quantifier-free formula is equivalent to a formula of the form

ψ1 ∨ · · · ∨ ψn

where each ψi is a conjunction of atomic formulas and negated atomic formu-
las. Hence, if ϕ is T -equivalent to a quantifier-free formula, it is T -equivalent
to one in this form, whence ∃xϕ is equivalent to (∃xψ1)∨ · · · ∨ (∃xψn), that
is: a disjunction of simple formulas. Now the condition in the lemma tells us
that each of these is T -equivalent to a quantifier-free formula, and therefore
so is ∃xϕ.

For the case ∀xϕ, one simply uses that this is equivalent to ¬∃x¬ϕ.

In this section, by way of example we shall prove for one theory that it has
quantifier elimination: the theory of algebraically closed fields Tacf . Recall
that a field k is algebraically closed if every polynomial (which is not a
constant different from 0) with coefficients in k has a root (a zero) in k.
That this theory has quantifier elimination, was proved by Alfred Tarski in
1948.

Let us use L for the language Lrings: the language of commutative rings
with 1. The L-theory Tacf has, besides the axioms for commutative rings
with 1, the axioms:

∀x(¬(x = 0) → ∃y(x·y = 1))

∀y0 · · · yn((
∧n−1
i=0 yi = 0 ∧ yn 6= 0) ∨ ∃x(y0·xn + · · · + yn−1·x+ yn = 0))

(here yn 6= 0 abbreviates ¬(yn = 0), xn abbreviates the term x· · · · ·x
︸ ︷︷ ︸

n times

, and

∧n−1
i=0 yi = 0 is short for y0 = 0 ∧ · · · ∧ yn−1 = 0)

The last line describes an axiom for each n ≥ 1, so there are infinitely many
axioms).

These axioms express that we have a field, in which every nonconstant poly-
nomial has a root. In other words, an algebraically closed field.

Note that every term t(x, y1, . . . , yn) of L in variables x, y1, . . . , yn de-
notes a polynomial in the same variables, and coefficients in N, so with every
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atomic formula t = s in these variables we can associate a polynomial P with
coefficients in Z, such that in every ring R and a, b1, . . . , bn ∈ R,

R |= (t = s)(a, b1, . . . , bn) iff P (a, b1, . . . , bn) = 0 in R

Furthermore we notice that since every field is an integral domain, a con-
junction r1 6= 0 ∧ · · · ∧ rk 6= 0 is equivalent to r1 · · · rk 6= 0. So we can write
every simple L-formula as

∃x(P1(x, y1, . . . , yn) = 0 ∧ · · · ∧ Pk(x, y1, . . . , yn) = 0 ∧Q(x, y1, . . . , yn) 6= 0)

Definition 2.7.2 Let L be a language, Γ a set of L-formulas, M and N
L-structures, ~a = a1, . . . , an and ~b = b1, . . . , bn tuples of elements of M and
N , respectively. Write ~a ≡Γ

~b if for every formula φ(x1, . . . , xn) from Γ we
have:

M |= φ(a1, . . . , an) ⇔ N |= φ(b1, . . . , bn)

We shall apply this for Γ the set of quantifier-free L-formulas and for Γ the
set of simple L-formulas; and write ~a ≡qf

~b, ~a ≡simple
~b.

Lemma 2.7.3 Let L be an arbitrary language. Suppose that an L-theory T
has the following property:

Whenever M and N are models of T , and ~a = a1, . . . , an, ~b =
b1, . . . , bn are tuples of elements of M and N , respectively, then
~a ≡qf

~b implies ~a ≡simple
~b

Then T has quantifier elimination.

Proof. Assume that T has the property in the statement of the Lemma. By
Lemma 2.7.1 we have to show that every simple L-formula is T -equivalent
to a quantifier-free formula in the same free variables. So, let ∃vφ(v, w̄) be
a simple formula, with ~w = w1, . . . , wn the free variables. Let ~c = c1, . . . , cn
be new constants; we write L~c for L ∪ {c1, . . . , cn}.

Let Γ be the set of all quantifier-free L-formulas ψ(~w) such that

T |= (∃vφ(v,~c)) → ψ(~c)

and write Γ(~c) for {ψ(~c) |ψ(~w) ∈ Γ}.

Claim 1 T ∪ Γ(~c) |= ∃vφ(v,~c)

To prove Claim 1, suppose for a contradiction that M is a model of T ∪Γ(~c)
and M |= ¬∃vφ(v,~c). Let ∆ be the set of all quantifier-free L~c-sentences
which are true in M .
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Claim 2 The theory T ∪ ∆ ∪ {∃vφ(v,~c)} is consistent.

Proof of Claim 2: suppose that this theory is inconsistent, then by the
Compactness Theorem there are finitely many elements δ1(~c), . . . , δk(~c) of
∆ such that

T ∪ {δ1(~c), . . . , δk(~c)} ∪ {∃vφ(v,~c)}

is inconsistent. This means that

T |= ∃vφ(v,~c) → ¬δ1(~c) ∨ · · · ∨ ¬δk(~c)

and therefore by definition of Γ, that the formula ¬δ1(~w) ∨ · · · ∨ ¬δk(~w) is
an element of Γ.

Now M is, by assumption, a model of Γ(~c) so we have

M |= ¬δ1(~c) ∨ · · · ∨ ¬δk(~c)

On the other hand, the sentences δ1(~c), . . . , δk(~c) are elements of ∆ and
therefore true in M by definition of ∆. Clearly, we have a contradiction
now, which proves Claim 2.

Having proved Claim 2, we return to the proof of Claim 1. By Claim 2, let
N be a model of T ∪ ∆ ∪ {∃vφ(v,~c)}.

Let ~a = ~cM and ~b = ~cN . We have now, for every quantifier-free L-formula
ψ(~w):

M |= ψ(~a) ⇔ M |= ψ(~c)
⇔ ψ(~c) ∈ ∆
⇔ N |= ψ(~c)

⇔ N |= ψ(~b)

We conclude that ~a ≡qf
~b. However, M |= ¬∃vφ(v,~a) whereas N |=

∃vφ(v,~b). Since ∃vφ(v, ~w) was assumed to be a simple formula, we see
that ~a 6≡simple

~b.

But M and N are models of T . So we see that T does not have the
property in the statement of the Lemma. This contradiction proves Claim
1.

Having proved Claim 1, we apply the Compactness Theorem once again,
and see that there must be finitely many γ1(~c), . . . , γm(~c) ∈ Γ(~c) such that

T |=
m∧

i=1

γi(~c) → ∃vφ(v,~c)
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Which means, since the constants ~c do not appear in T , that

T |= ∀~w(

m∧

i=1

γi(~w) → ∃vφ(v, ~w))

Since all γi are elements of Γ, we see that the formula ∃vφ(v, ~w) is T -
equivalent to the quantifier-free formula

∧m
i=1 γi(~w), and we are done.

In order to prove that the theory Tacf has quantifier elimination, we need
one ingredient from algebra:

Fact. For any field K there is an algebraically closed field K, the algebraic
closure of K, such that K ⊂ K and moreover, whenever K is embedded
in an algebraically closed field L, there is a (non-unique) extension of this
embedding to an embedding of K into L. In that case, the image of K in
L consists precisely of those elements which are zeroes of polynomials with
coefficients in K.

Theorem 2.7.4 (Tarski) The theory Tacf has quantifier elimination.

Proof. We wish to apply Lemma 2.7.3. Suppose K and K ′ are algebraically
closed fields, ~a ∈ K and ~b ∈ K ′ are such that for every quantifier-free
L = Lrings-formula ψ(~w) we have K |= ψ(~a) if and only if K ′ |= ψ(~b). Then
the subring of K generated by ~a is isomorphic to the subring of K ′ generated
by ~b, so we may as well assume that ~a = ~b ∈ K ∩K ′. Let R ⊂ K ∩K ′ be
the quotient field of the subring of K ∩K ′ generated by ~a.

Now let ∃vφ(v, ~w) be a simple L-formula, which we have seen may be
taken to be of the form

∃v(P1(v, ~w) = 0 ∧ · · · ∧ Pk(v, ~w) = 0 ∧Q(v, ~w 6= 0))

where P1, . . . , Pk, Q are polynomials with coefficients in Z. We have to prove:
if K |= ∃vφ(v,~a) then K ′ |= ∃vφ(v,~a).

If all the polynomials Pi(v,~a) are identically zero, then this reduces to:
if K |= ∃vQ(v,~a) 6= 0 then K ′ |= ∃vQ(v,~a) 6= 0. But if K |= ∃vQ(v,~a) 6= 0,
then the polynomial Q(v,~a) is not identically zero, and has therefore only
finitely many zeroes. On the other hand K ′, being algebraically closed, is
infinite; hence K ′ |= ∃vQ(v,~a) 6= 0 as desired.

If not all polynomials Pi are identically zero, and c ∈ K satisfies K |=
φ(c,~a), then c is algebraic over ~a and therefore an element of the algebraic
closure of R. Since this algebraic closure embeds into K ′, we also have an
element d of K ′ such that K ′ |= φ(d,~a). We have verified the hypothesis of
Lemma 2.7.3 and conclude that Tacf has quantifier elimination.
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Exercise 75 Let φ be the Lrings-sentence

∃x(x2 + 1 = 0 ∧ x+ 1 6= 0)

Give a quantifier-free Lrings-sentence ψ which is Tacf -equivalent to φ.

Exercise 76 Let K be an algebraically closed field, and φ(v) an Lrings-
formula in one free variable v. Prove that the set {a ∈ K |K |= φ(a)} is
either finite or cofinite.

In the book [20] you will find many more proofs of quantifier elimination for
various theories.

Applications of Quantifier Elimination for Tacf

In this subsection we present a few mathematical applications of quantifier
elimination for algebraically closed fields.

The theory Tacf is not complete, because it does not settle all quantifier-free
sentences of Lrings: for example, the sentence 1 + 1 + 1 = 0. However, once
we specify the characteristic of the field, the theory becomes complete. Let
φn be the sentence 1 + · · · + 1

︸ ︷︷ ︸

n times

= 0. Define the following theories:

T pacf = Tacf ∪{φp} for a prime number p, is the theory of algebraically closed
fields of characteristic p;

T 0
acf = Tacf ∪ {¬φn |n > 0} is the theory of algebraically closed fields of

characteristic zero.

Then the theories T pacf and T 0
acf are complete, for by quantifier elimination

we only have to look at quantifier-free sentences. These are combinations
(using ∧, ∨, ¬ and →) of sentences t = s, with t and s closed terms. Then
t and s represent elements of Z, and t = s is a consequence of T pacf precisely
when their difference is a multiple of p. For characteristic 0: t = s is a
consequence of T 0

acf precisely when this sentence is true in Z.

The completeness of these theories has the following consequence. We write
Fp for the field of p elements, and Fp for its algebraic closure. C is the field
of complex numbers.

Lemma 2.7.5 Let φ be a sentence of Lrings. The following assertions are
equivalent:

i) C |= φ
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ii) There is a natural number m such that for all primes p > m, Fp |= φ

Proof. C is an algebraically closed field of characteristic zero so if C |= φ
then by completeness of T 0

acf , T
0
acf |= φ. By the Compactness Theorem, there

is a number m such that Tacf ∪ {¬φn |n ≤ m} |= φ. It follows that for every
p > m, Fp |= φ. This proves i)⇒ii); the converse implication is proved in
the same way, considering ¬φ instead of φ.

The following little theorem is a nice application of this lemma.

Theorem 2.7.6 Let F1, . . . , Fn be polynomials in n variables Y1, . . . , Yn and
with complex coefficients. Consider the function f : Cn → Cn defined by

f(z1, . . . , zn) = (F1(z1, . . . , zn), . . . , Fn(z1, . . . , zn))

Then if f is injective, it is also surjective.

Proof. Convince yourself that for every natural number d > 0 there exists
an Lrings-sentence Φd which expresses: “for every n-tuple of polynomials of
degree ≤ d, if the associated function f of n variables is injective, then it is
surjective”.

For an application of Lemma 2.7.5, we show that Φd is true in every
field Fp. For suppose we have n polynomials F1, . . . , Fn of degree ≤ d and
coefficients in Fp, such that the function f : (Fp)

n → (Fp)
n is injective. Let

(x1, . . . , xn) ∈ (Fp)
n. Let a1, . . . , ak be the list of coefficients which occur in

the Fi. There is a least subfield F of Fp which contains all xi and all aj .
Then F is a finite extension of Fp, hence finite. Moreover, f restricts to a
function Fn → Fn which is still injective. But every injective function from
a finite set to itself is also surjective. We conclude that (x1, . . . , xn) is in the
image of f . Therefore, Fp |= Φd.

By Lemma 2.7.5, C |= Φd, which proves the theorem.

Another application of quantifier elimination for algebraically closed fields
concerns a weak form of Hilbert’s Nullstellensatz. We have to invoke a result
from algebra.

Lemma 2.7.7 (Hilbert Basis Theorem) For every field K, every ideal
of the polynomial ring K[X1, . . . ,Xn] is finitely generated.

Proof. See, e.g., [19].

Theorem 2.7.8 (Hilbert Nullstellensatz; weak form) Suppose K is an
algebraically closed field and K[X1, . . . ,Xn] the polynomial ring over K in
n variables. Suppose I is an ideal in K[X1, . . . ,Xn]. Then either 1 ∈ I
or there are elements a1, . . . , an in K such that g(a1, . . . , an) = 0 for every
g ∈ I.
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Proof. Suppose 1 6∈ I. Then I is contained in a maximal ideal M of
K[X1, . . . ,Xn]. LetK ′ be the algebraic closure of the fieldK[X1, . . . ,Xn]/M .
In K ′, the elements X1, . . . ,Xn have the property that g(X1, . . . ,Xn) = 0
for every g ∈ I.

Now K is a subring of K ′ and both are algebraically closed fields; by
quantifier elimination, K is an elementary substructure of K ′. It follows
that for any finite number g1, . . . , gm of elements of I,

K |= ∃y1 · · · yn(g1(~y) = 0 ∧ · · · ∧ gm(~y) = 0)

But by the Hilbert Basis Theorem (Lemma 2.7.7) every ideal of K[X1, . . . ,Xn]
is finitely generated, so we are done.

In fact, there are many applications of Logic (Model Theory) to Algebra.
For a modern introduction to this area see [5].

2.8 The Löwenheim-Skolem Theorems

The theorems in this section are about the question how “big” a model of
a consistent first order L-theory T can be. Of course, it can happen that T
contains a sentence which forces every model of T to have cardinality ≤ n
for some n ∈ N, as we have seen. It is also possible that a theory forces
models to be at least as big as a given set C: if L has constants for each
element of C, and the theory has axioms

¬(c = d)

for each pair (c, d) of distinct constants.
The upshot of this section will be that this is basically all a theory can

say; if there is an infinite model of T , there will, in general, be models of T of
every infinite cardinality greater than a certain cardinal number associated
with the language L.

Theorem 2.8.1 (Upward Löwenheim-Skolem Theorem) Suppose T
has an infinite model. Then for any set C there is a model M of T such
that there is an injective function from C into M .

Proof. Let LC be the language L of the theory T , together with new
constants c for every c ∈ C. We consider the LC-theory TC , which has all
the axioms of T , together with the axioms

¬(c = d)
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for every pair of distinct elements c, d of C.
If M is a model of TC , then M is a model of T , and moreover, the

assignment c 7→ cM specifies a function from C into M , which is injective
since M |= ¬(c = d) (which means cM 6= dM ) whenever c 6= d. So all we
have to do is show that TC is consistent. This is done with the Compactness
Theorem.

Let T ′ ⊆ TC be a finite subtheory. Then in T ′, only finitely many
constants from C occur, say c1, . . . , cn. Now by assumption T has an infinite
model N ; take n distinct elements x1, . . . , xn from N and make N into an
LC-structure by putting (ci)

N = xi for i = 1, . . . , n and, for c 6= c1, . . . , cn,
let cN be an arbitrary element of N .

Then N is an LC-structure which is a model of T ′. Hence, every finite
subtheory T ′ of TC has a model; so TC has a model by the Compactness
Theorem.

The proof can be refined to obtain “large” models of T with certain extra
properties. For example, if N is an infinite model of T and C is a set, there
is a model M of T , such that C embeds into M and moreover, M satisfies
exactly the same L-sentences as N .

Exercise 77 Prove this last statement.
[Hint: instead of T , use the set of L-sentences which are true in N ]

Thus, we see that it is relatively easy to “enlarge” models; the construc-
tion of smaller ones is a bit more involved. First we prove the following
strengthening of Theorem 2.8.1.

Corollary 2.8.2 Let N be an infinite model of a theory T , and C an arbi-
trary set. Then there exists a model M of T which contains N as elementary
substructure and allows an injective function: C →M .

Proof. Apply Theorem 2.8.1 to the theory E(N) (see exercise 71) and note
that T ⊆ E(N).

We state now the “downward Löwenheim-Skolem Theorem”. Its formulation
uses the notion of cardinality of the language L, notation ||L||, which is by
definition the cardinality of the set of L-formulas. Since L is also defined as
a set (the set of all constants, function symbols and relation symbols), we
also have the ‘ordinary cardinality’ |L|; the following exercise compares the
two.

Exercise 78 Show that ||L|| = |L| if L is infinite, and that ||L|| = ω if L is
finite.



2.8. THE LÖWENHEIM-SKOLEM THEOREMS 71

Theorem 2.8.3 (Downward Löwenheim-Skolem Theorem) Let M be
an infinite model of a theory T in a language L, and let C ⊆M be a subset
with |C| ≤ ||L||. Then there is an elementary substructure N � M which
contains C as a subset, and has the property that |N | ≤ ||L||.

Proof. We shall only prove the theorem for ||L|| = ω (so L is a countable
language). The general case is proved in essentially the same way, but
managing the cardinalities becomes a bit more involved. So let C ⊆ M be
a countable subset. We assume that C 6= ∅; the case that C = ∅ is left to
you.

The submodel N will be constructed as the union of a chain of countable
subsets of M :

C = C0 ⊆ C1 ⊆ C2 ⊆ · · ·
This chain is constructed inductively as follows: C = C0 is given. Suppose
we have constructed Ck (and it is part of the induction hypothesis that Ck
is countable). Let Nk be the substructure of M generated by Ck. Then
Nk is countable by Exercise 70. Now for each L-formula of the form ∃xϕ
with free variables y1, . . . , yn and each n-tuple m1, . . . ,mn of elements of
Nk such that M |= ∃xϕ(x,m1, . . . ,mn), choose an element m of M such
that M |= ϕ(m,m1, . . . ,mn). Let Ck+1 be Nk together with all elements
m so chosen. Since Nk is countable and there are only countably many
L-formulas, Ck+1 is countable too. This completes the construction of the
chain.

Let N be the union
⋃∞
i=0 Ci. Then N is a substructure of M , because N

contains cM for every constant c of L (check!), and if f is an n-place function
symbol of L and m1, . . . ,mn ∈ N , then for some k already m1, . . . ,mn ∈ Ck,
so fM(m1, . . . ,mn) ∈ Nk ⊆ Ck+1 ⊆ N . And N is the union of a countable
family of countable subsets of M , so N is countable and infinite; so |N | ≤ ||L||
as desired.

It remains to prove that N is an elementary substructure of M . For this,
we use the characterization given in Exercise 72. Suppose ∃xϕ(x, y1, . . . , yn)
is an L-formula andm1, . . . ,mn ∈ N are such thatM |= ∃xϕ(x,m1, . . . ,mn).
Then there is a natural number k such that already m1, . . . ,mn ∈ Ck. By
construction of Ck+1, there is m ∈ Ck+1 such that M |= ϕ(m,m1, . . . ,mn);
this m is also an element of N . By Exercise 72, N is an elementary sub-
structure of M .

We wrap up this section by putting together Corollary 2.8.2 and Theo-
rem 2.8.3 to obtain the following useful conclusion:
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Corollary 2.8.4 Let M be an infinite model of an L-theory T , and let C be
a set such that |C| ≥ ||L||. Then there is a model N of T such that |N | = |C|
and moreover N and M satisfy the same L-sentences.

Proof. First we apply Corollary 2.8.2 to obtain a model M ′ which contains
M as elementary substructure and allows an embedding C →M ′. Then M
and M ′ satisfy the same L-sentences; in particular, M ′ is infinite.

Next, consider the language LC which has an extra constant for every el-
ement of C. The injective function C →M ′ makes M ′ into an LC-structure.
Clearly |C| ≤ ||LC ||. Applying Theorem 2.8.3 with LC in the role of L, we see
that M ′ contains an elementary substructure N with C ⊆ N and |N | = |C|.
Then M and N satisfy the same L-sentences.

2.9 Categorical Theories

Let us consider, for an example, the theory of k-vector spaces discussed in
subsection 2.4.3.

If k is a finite field, any two k-vector spaces of the same cardinality are
isomorphic as k-vector spaces, for if |V | = |W | then any basis for V and
any basis for W must have the same cardinality (if B is a finite basis for
V , then |V | = |k||B|; if B is infinite, then |V | = |B|). And any bijection
between bases extends uniquely to a k-linear map which is an isomorphism
of k-vector spaces.

If k is infinite, this is no longer true: let k = Q. The Q-vector space
Q[X] is countable and therefore of the same cardinality as Q, but it has
infinite dimension over Q and hence cannot be isomorphic to Q as vector
space over itself.

However, it is true (and follows by much the same reasoning as for finite
k) that if |V | = |W | > |k|, then V and W are isomorphic as k-vector spaces.

Let Lk be the language of k-vector spaces, and let T∞
k be the theory of

infinite k-vector spaces. That is, T∞
k has the axioms for a k-vector space

together with all the sentences ¬φn from Example 1 in section 2.5.

Theorem 2.9.1 The theory T∞
k is complete.

Proof. Suppose that T∞
k 6|= ϕ and T∞

k 6|= ¬ϕ, for some Lk-sentence ϕ. Then
there are infinite k-vector spaces V and W with V |= ¬ϕ and W |= ϕ. But
then, if C is any set such that |C| > ||Lk||, Corollary 2.8.4 gives us k-vector
spaces V ′ and W ′, such that:

i) V ′ satisfies the same Lk-sentences as V ;
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ii) W ′ satisfies the same Lk-sentences as W ;

iii) |V ′| = |W ′| = |C|

Then as we have just argued, V ′ and W ′ must be isomorphic as k-vector
spaces, yet V ′ |= ¬ϕ by i), and W ′ |= ϕ by ii). But this is clearly impossible,
by exercises 66 and 67.

Exercise 79 For another proof of the fact that T∞
k is complete: prove that

T∞
k has quantifier elimination.

Definition 2.9.2 Let κ be a cardinal number. An L-theory T is called κ-
categorical if for every pair M,N of models of T of cardinality κ, there is
an isomorphism between M and N .

As we have seen, the theory of infinite k-vector spaces is κ-categorical if
κ > |k|.

The following theorem generalizes the argument above that the theory
T∞
k must be complete; its proof is therefore left as an exercise.

Theorem 2.9.3 ( Los-Vaught Test) Suppose T is an L-theory which only
has infinite models, and suppose T is κ-categorical for some κ ≥ ||L||. Then
T is complete.

Exercise 80 Prove Theorem 2.9.3.

We conclude this chapter by giving an example of a theory which is ω-
categorical; the theory of dense linear orders without end-points. In this
example it is not so much the result which is important, as the technique of
the proof, which is known as Cantor’s back-and-forth argument.

Definition 2.9.4 The theory Td of dense linear orders without end-points
is formulated in a language with just one binary relation symbol <, and has
the following axioms:

∀x¬(x < x) irreflexivity
∀xyz(x < y ∧ y < z → x < z) transitivity
∀xy(x < y ∨ x = y ∨ y < x) linearity

∀xy(x < y → ∃z(x < z ∧ z < y)) density
∀x∃yz(y < x ∧ x < z) no end points

Theorem 2.9.5 (Cantor) The theory Td is ω-categorical.
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Proof. We have to show that any two countably infinite models M and N
of Td are isomorphic.

Start by choosing enumerations M = {m0,m1, . . .} and N = {n0, n1, . . .}
of M and N .

We shall construct an isomorphism β : M → N as the union of a chain
of order-preserving bijective functions between finite sets:

M0
//

β0

��

M1
//

β1

��

M2

β2

��

. . .

N0
// N1

// N2
. . .

such that the horizontal arrows are inclusions Mk ⊆Mk+1, Nk ⊆ Nk+1, and
βk is the restriction of βk+1 to Mk. Moreover, we shall make sure that for
each k, {m0, . . . ,mk} ⊆Mk and {n0, . . . , nk} ⊆ Nk, so at the end we obtain
a bijective function from M to N .

Let M0 = {m0}, N0 = {n0} and β0 the unique bijection.
Suppose βk : Mk → Nk has been constructed, as order-preserving bijec-

tion. We construct Mk+1, Nk+1 and βk+1 in two stages:

Stage 1. If mk+1 ∈ Mk, we do nothing in this stage and proceed to stage
2. If mk+1 6∈Mk there are two possibilities:

• Either mk+1 lies below all elements of Mk, or above all these elements.
In this case, we use the axiom “no end-points” to find an element
n ∈ N which has the same relative position with respect to Nk; we
add mk+1 to Mk, n to Nk and put βk+1(mk+1) = n.

• mk+1 lies somewhere between the elements of Mk. Then by axiom
“linearity” and the fact that Mk is finite, there is a greatest element
mj ∈ Mk and a least ml ∈ Mk such that mj < mk+1 < ml. We use
axiom “density” to pick an element n of N with βk(mj) < n < βk(ml);
we add mk+1 to Mk, n to Nk and put βk+1(mk+1) = n.

Stage 2. Here we do the symmetric thing with nk+1 and the inverse of the
finite bijective function we have obtained after stage 1. After completing
stage 2 we let βk+1 : Mk+1 → Nk+1 be the union of βk and what we have
added in stages 1 and 2.

This completes the construction of βk+1 and hence, inductively, of our chain
of finite bijective, order-preserving functions.

Exercise 81 Show that the theory Td is complete.
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Exercise 82 Use Lemma 2.7.3 to prove, that the theory Td has quantifier
elimination.

Exercise 83 Show that the theory Td is not 2ω-categorical.

Exercise 84 Use Theorem 2.9.5 for another proof that R is not countable.
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Chapter 3

Proofs

In Chapter 2, we have introduced languages and formulas as mathematical
objects: formulas are just certain finite sequences of elements of a certain
set. Given a specific model, such formulas become mathematical statements
via the definition of truth in that model.

In mathematical reasoning, one often observes that one statement “fol-
lows” from another, without reference to specific models or truth, as a purely
“logical” inference. More generally, statements can be conjectures, assump-
tions or intermediate conclusions in a mathematical argument.

In this chapter we shall give a formal, abstract definition of a concept
called ‘proof’. A proof will be a finite object which has a number of as-
sumptions which are formulas, and a conclusion which is a formula. Given
a fixed language L, there will be a set of all proofs in L, and we shall be
able to prove the Completeness Theorem:

For a set Γ of L-sentences and an L-sentence φ, the relation
Γ |= φ holds if and only if there exists a proof in L with conclusion
φ and assumptions from the set Γ.

Recall that Γ |= φ was defined as: for every L-structure M which is a model
of Γ, it holds that M |= φ.

Therefore, the Completeness Theorem reduces a universal (“for all”)
statement about a large class of structures, to an existential (“there is”)
statement about one set (the set of proofs). Furthermore, we shall see that
proofs are built up by rules that can be interpreted as elementary reasoning
steps (we shall not go into the philosophical significance of this). Finally, we
wish to remark that it can be effectively tested whether or not an object of
appropriate kind is a ‘proof’, and that the set of all sentences φ such that

77
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Γ |= φ can be effectively generated by a computer (we refer to a lecture
course in Recursion Theory for a precise meaning of this, e.g. [4]).

Mathematicians who devised definitions of a notion of ‘formal proof’ include
Frege, Russell and Hilbert; but by far the most influential one is due to Ger-
hard Gentzen (1909–1945). Gentzen gave in fact two widely used systems,
of which we present the first below; this system was called by him ‘natural
deduction’ (Kalkül des natürlichen Schließens,[9]). For biographical infor-
mation on Gentzen, whose life was shaped to a great extent by the political
developments in Germany during the period 1933–1945, see [21].

The Completeness Theorem was proved by Kurt Gödel in 1929 ([10]),
but our proof below is based on that of Leon Henkin ([14]).

3.1 Proof Trees

In a well-structured mathematical argument, it is clear at every point what
the conclusion reached so far is, what the current assumptions are and on
which intermediate results each step depends.

We model this mathematically with the concept of a tree.

Definition 3.1.1 A tree is a partial order (T,≤) which has a least element,
and is such that for every x ∈ T , the set

↓(x) ≡ {y ∈ T | y ≤ x}

is well-ordered by the relation ≤.

We shall only be concerned with finite trees; that is, finite posets T with
least element, such that each ↓(x) is linearly ordered.

This is an example of a tree:

e

b c d ◦

a ◦

>>>>>>>>

�������� ◦

��������

r

@@@@@@@

oooooooooooooo

We use the following dendrological language when dealing with trees: the
least element is called the root (in the example above, the element marked
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r), and the maximal elements are called the leaves (in the example, the
elements marked a, b, c, d, e).

When we see a proof as a tree, the leaves are the places for the assump-
tions, and the root is the place for the conclusion. The information that
the assumptions give, may be compared to the carbon dioxide in real trees,
which finds its way from the leaves to the root.

The following exercise gives some alternative ways of characterizing trees.

Exercise 85 a) Show that a finite tree is the same thing as a finite se-
quence of nonempty finite sets and functions

An → · · · → A1 → A0

where A0 is a one-element set.

b) Show that a finite tree is the same thing as a finite set V together with
a function f : V → V which has the properties that f has exactly one
fixed point r = f(r), and there are no elements x 6= r such that
x = fn(x) for some n ∈ N.

c) If V is a finite set, a hierarchy on V is a collection C of subsets of V ,
such that V ∈ C, and for any two elements C1 6= C2 of C, we have
C1 ⊂ C2 or C2 ⊂ C1 or C1 ∩C2 = ∅. Let us call C a T0-hierarchy if for
each x, y ∈ V with x 6= y, there is C ∈ C such that either x ∈ C and
y 6∈ C, or y ∈ C and x 6∈ C. Call C connected if there is an element
r ∈ V such that the only element C ∈ C such that r ∈ C, is V itself.

i) Show that if C is a connected T0-hierarchy on V , then the relation

x ≤ y if and only if for all C ∈ C, x ∈ C implies y ∈ C

defines a partial order on V which is a tree; and moreover, for
every x ∈ V , the set {y ∈ V |x ≤ y} is an element of C.

ii) Show also that if ≤ is a partial order on a finite set V which is
a tree, then the set of subsets of V

{{y ∈ V |x ≤ y} |x ∈ V }

is a connected T0-hierarchy on V .

We shall be interested in L-labelled trees; that is: trees where the elements
have ‘names’ which are L-formulas or formulas marked with a symbol †. For



80 CHAPTER 3. PROOFS

example:

χ

φ ψ †ω ∃yψ

†χ χ ∧ ψ

AAAAAAA

������

φ ∨ ψ

zzzzzz

∀xχ

AAAAAA

oooooooooo

The following definition formalizes this:

Definition 3.1.2 Let L be a language. We fix an extra symbol †. A marked
L-formula is a pair (†, ϕ); we shall write †ϕ for (†, ϕ). Let F (L) be the set
of L-formulas, and let †F (L) be the disjoint union of F (L) and the set
{†} × F (L) of marked L-formulas.

An L-labelled tree is a finite tree T together with a function f from T
to the set †F (L), such that the only elements x of T such that f(x) is a
marked formula, are leaves of T .

The function f is called the labelling function, and f(x) is called the label
of x.

Among the L-labelled trees, we shall single out a set of ‘proof trees’. The
definition (Definition 3.1.3 below) uses the following two operations on L-
labelled trees:

1). Joining a number of labelled trees by adding a new root labelled φ
Suppose we have a finite number of labelled trees T1, . . . , Tk with labelling
functions f1, . . . , fk. Let T be the disjoint union T1 + · · ·+Tk together with
a new element r, and ordered as follows: x ≤ y if and only if either x = r
or for some i, x, y ∈ Ti and x ≤ y holds in Ti.

Let the labelling function f on T be such that it extends each fi on Ti
and has f(r) = φ.

We denote this construction by Σ(T1, . . . , Tk;φ).

2). Adding some markings
Suppose T is a labelled tree with labelling function f . If V is a set of leaves
of T , we may modify f to f ′ as follows: f ′(x) = f(x) if x 6∈ V or f(x) is a
marked formula; otherwise, f ′(x) = (†, f(x)).

We denote this construction by Mk(T ;V ).
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Exercise 86 Show that, up to equivalence, every L-labelled tree can be
constructed by a finite number of applications of these two constructions,
starting from one element trees with unmarked labels.

Here we regard two L-labelled trees as equivalent if the underlying trees are
isomorphic as partial orders, and they have the same labelling modulo this
isomorphism.

For the rest of this section, we shall assume that we have a fixed language
L which we won’t mention (we say ‘labelled’ and ‘formula’ instead of ‘L-
labelled’, ‘L-formula’ etc.). Let us also repeat that for us from now on,
‘tree’ means finite tree.

If T is a labelled tree with labelling function f , root r and leaves a1, . . . , an,
we shall call the formula f(r) (if it is a formula, that is: unmarked) the
conclusion of T and the formulas f(ai) the assumptions of T . Assumptions
of the form †ϕ are called eliminated assumptions.

We can now give the promised definition of ‘proof tree’. Instead of
reading through the definition in one go, you are advised to work through a
few clauses, and then have a look at the examples given after the definition;
referring back to it when necessary.

Definition 3.1.3 The set P of proof trees is the smallest set of labelled
trees, satisfying:

Ass For every formula ϕ, the tree with one element r and labelling function
f(r) = ϕ, is an element of P. Note that ϕ is both assumption and
conclusion of this tree. We call this tree an assumption tree.

∧I If T1 and T2 are elements of P with conclusions ϕ1 and ϕ2 respectively,
then Σ(T1, T2;ϕ1∧ϕ2) is an element of P. We say this tree was formed
by ∧-introduction.

∧E If T is an element of P with conclusion φ ∧ ψ then both Σ(T ;φ)
and Σ(T ;ψ) are elements of P. These are said to be formed by ∧-
elimination.

∨I If T is an element of P with conclusion ϕ, and ψ is any formula, then
both Σ(T ;ϕ∨ψ) and Σ(T ;ψ∨ϕ) are elements of P. We say these are
formed by ∨-introduction.

∨E Suppose that T, S1, S2 are elements of P such that the conclusion of T
is ϕ∨ψ and the conclusions of S1 and S2 are the same (say, χ). Let V1
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be the subset of the leaves of S1 labelled ϕ, and let V2 be the subset
of the leaves of S2 labelled ψ. Let S′

1 = Mk(S1;V1), S′
2 = Mk(S2;V2).

Then Σ(T, S′
1, S

′
2;χ) is an element of P (∨-elimination).

→ I Suppose T is an element of P with conclusion ϕ, and let ψ be any
formula. Let V be the subset of the set of leaves of T with label ψ,
and T ′ = Mk(T ;V ). Then Σ(T ′;ψ → ϕ) is an element of P (→-
introduction).

→ E Suppose T and S are elements of P with conclusions ϕ → ψ and ϕ,
respectively. Then Σ(T, S;ψ) is an element of P (→-elimination).

¬I Suppose T is an element of P with conclusion ⊥. Let ϕ be any formula,
and V be the subset of the set of leaves of T labelled ϕ. Let T ′ =
Mk(T ;V ). Then Σ(T ′;¬ϕ) is an element of P (¬-introduction).

¬E Suppose T and S are elements of P with conclusions ϕ and ¬ϕ, re-
spectively. Then Σ(T, S;⊥) is an element of P (¬-elimination).

⊥E Suppose T is an element of P with conclusion ⊥. Let ϕ be any formula,
and V the subset of the set of leaves of T labelled ¬ϕ. Let T ′ =
Mk(T ;V ). Then Σ(T ′;ϕ) is an element of P (⊥-elimination; one also
hears reductio ad absurdum or proof by contradiction).

Subst Suppose T and S are elements of P such that the conclusion of T is
ϕ[t/x] and the conclusion of S is (t = s). Suppose furthermore that the
substitutions ϕ[t/x] and ϕ[s/x] are defined (recall from Chapter 2: this
means that no variable in t or s becomes bound in the substitution).
Then Σ(T, S;ϕ[s/x]) is an element of P (Substitution).

∀I Suppose T is an element of P with conclusion ϕ[u/v], where u is a
variable which does not occur in any unmarked assumption of T or
in the formula ∀vϕ (and is not bound in ϕ). Then Σ(T ;∀vϕ) is an
element of P (∀-introduction).

∀E Suppose T is an element of P with conclusion ∀uϕ, and t is a term
such that the substitution ϕ[t/u] is defined. Then Σ(T ;ϕ[t/u]) is an
element of P (∀-elimination).

∃I Suppose T is an element of P with conclusion ϕ[t/u], and suppose
the substitution ϕ[t/u] is defined. Then Σ(T ;∃uϕ) is an element of P
(∃-introduction).
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∃E Suppose T and S are elements of P with conclusions ∃xϕ and χ,
respectively. Let u be a variable which doesn’t occur in ϕ or χ, and is
such that the only unmarked assumptions of S in which u occurs, are of
the form ϕ[u/x]. Let V be the set of leaves of S with label ϕ[u/x], and
S′ = Mk(S;V ). Then Σ(T, S′;χ) is an element of P (∃-elimination).

Examples. The following labelled trees are proof trees. Convince yourself
of this, and find out at which stage labels have been marked:
a)

†ϕ †ψ

ϕ ∧ ψ

KKKKKKKKK

sssssssss

ϕ

ψ → ϕ

ϕ→ (ψ → ϕ)

b)

†(ϕ ∧ ψ) †(ϕ ∧ ψ)

ψ ϕ

ψ ∧ ϕ

RRRRRRRRRRRRR

lllllllllllll

(ϕ ∧ ψ) → (ψ ∧ ϕ)

c)

⊥

ϕ

“Ex falso sequitur quodlibet”
d)
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†(¬ϕ) †(¬ψ)

†(¬(¬ϕ ∨ ¬ψ)) ¬ϕ ∨ ¬ψ †(¬(¬ϕ ∨ ¬ψ)) ¬ϕ ∨ ¬ψ

⊥

VVVVVVVVVVVVV ⊥

lllllllll

ϕ ψ

†(¬(ϕ ∧ ψ)) ϕ ∧ ψ

VVVVVVVVVVVVVVVVV

⊥

VVVVVVVVVVVVVV

hhhhhhhhhhhhhhhhh

¬ϕ ∨ ¬ψ

¬(ϕ ∧ ψ) → (¬ϕ ∨ ¬ψ)

e)
†(ϕ ∧ ψ) †(ϕ ∧ ψ)

†(¬ϕ) ϕ †(¬ψ) ψ

⊥

VVVVVVVVVVVVVVVV ⊥

NNNNNNN

†(¬ϕ ∨ ¬ψ) ¬(ϕ ∧ ψ) ¬(ϕ ∧ ψ)

¬(ϕ ∧ ψ)

VVVVVVVVVV

fffffffffffffffffff

(¬ϕ ∨ ¬ψ) → ¬(ϕ ∧ ψ)

f) The following “example” illustrates why, in formulating the rule ∀I, we
have required that the variable u does not occur in the formula ∀vϕ. For,
let ϕ be the formula u = v. Consider that (u = v)[u/v] is u = u, so were it
not for this requirement, the following tree would be a valid proof tree:

∀x(x = x)

u = u

∀v(u = v)
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Clearly, we would not like to accept this as a valid proof!

Definition 3.1.4 We define the relation

Γ ⊢ ϕ

as: there is a proof tree with conclusion ϕ and whose unmarked assumptions
are either elements of Γ or of the form ∀x(x = x) for some variable x. We
abbreviate {ϕ} ⊢ ψ as ϕ ⊢ ψ, we write ⊢ ψ for ∅ ⊢ ψ, and Γ, ϕ ⊢ ψ for
Γ ∪ {ϕ} ⊢ ψ.

Exercise 87 (Deduction Theorem) Prove, that the relation Γ, ϕ ⊢ ψ is
equivalent to Γ ⊢ ϕ→ ψ.

3.1.1 Variations and Examples

One variation in the notation of proof trees is, to write the name of each
construction step next to the labels in the proof tree.

For example, the proof tree

†ϕ

ϕ→ ϕ

is constructed from the assumption tree ϕ by →-introduction (at which
moment the assumption ϕ is marked). One could make this explicit by
writing

†ϕ

→ I ϕ→ ϕ

Another notational variation is one that is common in the literature:
the ordering is indicated by horizontal bars instead of vertical or skew lines,
and next to these bars, it is indicated by which of the constructions of
Definition 3.1.3, the new tree results from the old one(s). Assumptions
are numbered, such that different assumptions have different numbers, but
distinct occurrences of the same assumption may get the same number. If, in
the construction, assumptions are marked, this is indicated by their numbers
next to the name of the construction.
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In this style, the proof tree

†ϕ

ϕ→ ϕ

looks as follows:

†ϕ1

→ I, 1
ϕ→ ϕ

We shall call this a decorated proof tree. Although (or maybe: because!)
they contain some redundant material, decorated proof trees are easier to
read and better suited to practice the construction of proof trees.

In decorated style, examples a)–e) of the previous section are as follows:

a)

†ϕ1 †ψ2

∧I
ϕ ∧ ψ ∧Eϕ → I, 2
ψ → ϕ → I, 1

ϕ→ (ψ → ϕ)

The assumption ϕ, numbered 1, gets marked when construction → I with
number 1 is performed; etc.

b)

†ϕ ∧ ψ1

∧E
ψ

†ϕ ∧ ψ1

∧Eϕ ∧I
ψ ∧ ϕ → I, 1

(ϕ ∧ ψ) → (ψ ∧ ϕ)

c)

⊥ ⊥Eϕ

d)
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†¬(ϕ ∧ ψ)4

†¬(¬ϕ ∨ ¬ψ)3

†¬ϕ1

∨I¬ϕ ∨ ¬ψ
¬E⊥ ⊥E, 1

ϕ

†¬(¬ϕ ∨ ¬ψ)3

†¬ψ2

∨I¬ϕ ∨ ¬ψ
¬E⊥ ⊥E, 2

ψ ∧I
ϕ ∧ ψ

¬E⊥ ⊥E, 3
¬ϕ ∨ ¬ψ → I, 4

¬(ϕ ∧ ψ) → (¬ϕ ∨ ¬ψ)

e)

†¬ϕ ∨ ¬ψ5

†¬ϕ3

†ϕ ∧ ψ1

∧Eϕ ¬E⊥ ¬I, 1
¬(ϕ ∧ ψ)

†¬ψ4

†ϕ ∧ ψ2

∧E
ψ ¬E⊥ ¬I, 2

¬(ϕ ∧ ψ) ∨E, 3, 4
¬(ϕ ∧ ψ) → I, 5

(¬ϕ ∨ ¬ψ) → ¬(ϕ ∧ ψ)

Some more examples:

f) A proof tree for t = s ⊢ s = t:

∀x(x = x)
∀Et = t t = s

Substs = t

The use of Subtitution is justified since t = t is (u = t)[t/u]. Quite similarly,
we have a proof tree for {t = s, s = r} ⊢ t = r:

t = s s = r
Substt = r

g)

†¬∃xϕ(x)2

†ϕ(y)1
∃I∃xϕ(x)
¬E⊥ ¬I, 1

¬ϕ(y)
∀I∀x¬ϕ(x) → I, 2

¬∃xϕ(x) → ∀x¬ϕ(x)
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You should check why application of ∀I is justified in this tree.

h) The following tree gives an example of the ∃E-construction:

†∃xϕ(x)2

†∀x¬ϕ(x)3
∀E¬ϕ(y) †ϕ(y)1

¬E⊥ ∃E, 1
⊥ ¬I, 2

¬∃xϕ(x) → I, 3
∀x¬ϕ(x) → ¬∃xϕ(x)

i)

†¬∀x¬ϕ(x)3

†¬∃xϕ(x)2

†ϕ(y)1
∃I∃xϕ(x)
¬E⊥ ¬I, 1

¬ϕ(y)
∀I∀x¬ϕ(x)
¬E⊥ ⊥E, 2

∃xϕ(x) → I, 2
¬∀x¬ϕ(x) → ∃xϕ(x)

j) The following tree is given in undecorated style; it is a good exercise
to decorate it. It is assumed that the variables x and u do not occur in φ;
check that without this condition, it is not a correct proof tree:
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†¬ψ(u) †ψ(u)

†∀x(φ ∨ ψ(x)) ⊥

WWWWWWWWWWWWWWWWWWW †φ †¬φ

φ ∨ ψ(u) ⊥
����

⊥

XXXXXXXXXXXXXXXXXXX

iiiiiiiiiiiiiiii

ψ(u)

∀xψ(x)

†¬(φ ∨ ∀xψ(x)) φ ∨ ∀xψ(x)

⊥

XXXXXXXXXXXXXXX

φ

†¬(φ ∨ ∀xψ(x)) φ ∨ ∀xψ(x)

⊥

XXXXXXXXXXXXXXX

φ ∨ ∀xψ(x)

∀x(φ ∨ ψ(x)) → (φ ∨ ∀xψ(x))

A bit of heuristics. When faced with the problem of constructing a proof
tree which has a specified set of unmarked assumptions Γ and a prescribed
conclusion φ (often formulated as: “construct a proof tree for Γ ⊢ φ”), it
is advisable to use the following heuristics (but there is no guarantee that
they work! Or that they produce the most efficient proof):

If φ is a conjunction φ1 ∧ φ2, break up the problem into two problems
Γ ⊢ φ1 and Γ ⊢ φ2;

If φ is an implication φ1 → φ2, transform the problem into Γ∪ {φ1} ⊢
φ2;

If φ is a negation ¬ψ, transform into Γ ∪ {ψ} ⊢ ⊥;

If φ is of form ∀xψ(x), transform into Γ ⊢ ψ(u);
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If φ is a disjunction φ1 ∨ φ2, one may try the transformation into
Γ ⊢ ¬φ1 → φ2 or Γ ⊢ ¬φ2 → φ1;

In all other (non-obvious) cases, try Γ ∪ {¬φ} ⊢ ⊥.

Exercise 88 Construct proof trees for the equivalences of Exercise 40. Re-
call that ↔ is an abbreviation: for example, a proof tree for ⊢ (ϕ → ψ) ↔
(¬ϕ∨ψ) will be constructed out of two proof trees, one for {ϕ→ ψ} ⊢ ¬ϕ∨ψ,
and one for {¬ϕ ∨ ψ} ⊢ ϕ→ ψ, by applying →- and ∧-introduction.

3.1.2 Induction on Proof Trees

Since the set P of proof trees is defined as the least set of labelled trees
which contains the assumption trees ϕ and is closed under a number of
constructions (definition 3.1.3), P is susceptible to proofs by induction over
proof trees: if A is any set of labelled trees which contains all ϕ and is closed
under the constructions, then A contains P as a subset.

Some examples of properties of proof trees one can prove by this method:

1. No proof tree has a marked formula at the root.

2. In every proof tree T , for every x ∈ T there are at most 3 elements of
T directly above x (we say that every proof tree is a ternary tree).

3. If T is a proof tree for Γ ⊢ ϕ[c/u], where c is a constant that does not
occur in Γ, and v is a variable which doesn’t occur anywhere in T ,
then there is a proof tree for Γ ⊢ ϕ[v/u]. It then follows by ∀I that
there is a proof tree for Γ ⊢ ∀uϕ.

Exercise 89 Carry out the proofs of these statements. For 3, prove the
following: if T , c and v are as in the hypothesis, and T [v/c] results from T
by replacing c by v throughout, then T [v/c] is also a proof tree, and is a
proof tree for Γ ⊢ ϕ[v/u].

In the proof of the Soundness Theorem (section 3.2 below) we shall also
apply induction over proof trees.

Exercise 90 Let Γ ⊢H ϕ be defined as the least relation between sets of L-
formulas Γ and L-formulas ϕ, such that the following conditions are satisfied:

i) Γ ⊢H ∀x(x = x) always;

ii) If ϕ ∈ Γ, then Γ ⊢H ϕ;
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iii) if Γ ⊢H ϕ and Γ ⊢H ψ then Γ ⊢H (ϕ ∧ ψ), and conversely;

iv) if Γ ⊢H ϕ or Γ ⊢H ψ, then Γ ⊢H (ϕ ∨ ψ);

v) if Γ ∪ {ϕ} ⊢H χ and Γ ∪ {ψ} ⊢H χ, then Γ ∪ {ϕ ∨ ψ} ⊢H χ;

vi) if Γ ∪ {ϕ} ⊢H ⊥, then Γ ⊢H ¬ϕ;

vii) if Γ ⊢H ϕ and Γ ⊢H ¬ϕ then Γ ⊢H ⊥;

viii) if Γ ∪ {¬ϕ} ⊢H ⊥ then Γ ⊢H ϕ;

ix) if Γ ∪ {ϕ} ⊢H ψ then Γ ⊢H ϕ→ ψ;

x) if Γ ⊢H ϕ and Γ ⊢H ϕ→ ψ then Γ ⊢H ψ;

xi) if Γ ⊢H ψ(u) and u does not occur in Γ or in ∀xψ(x), then Γ ⊢H
∀xψ(x);

xii) if Γ ⊢H ∀xψ(x) then if ψ[t/x] is defined, Γ ⊢H ψ[t/x];

xiii) if ψ[t/x] is defined and Γ ⊢H ψ[t/x], then Γ ⊢H ∃xψ(x);

xiv) if Γ ∪ {ψ(u)} ⊢H χ and u does not occur in Γ, χ or ∃xψ(x), then
Γ ∪ {∃xψ(x)} ⊢H χ;

xv) if the substitutions ϕ[s/x] and ϕ[t/x] are defined, Γ ⊢H ϕ[t/x] and
Γ ⊢H t = s, then Γ ⊢H ϕ[s/x].

Show that the relation Γ ⊢H ϕ coincides with the relation Γ ⊢ ϕ from
Definition 3.1.4.

3.2 Soundness and Completeness

We compare the relation Γ ⊢ φ from Definition 3.1.4 to the relation Γ |= φ
from Chapter 2; recall that the latter means: in every model M of Γ, the
sentence φ holds.

In this section we shall prove the following two theorems, for Γ a set of
sentences, and φ a sentence:

Theorem 3.2.1 (Soundness Theorem) If Γ ⊢ φ then Γ |= φ.

Theorem 3.2.2 (Completeness Theorem; Gödel, 1929) If Γ |= φ then
Γ ⊢ φ.
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The Soundness Theorem follows easily from the following lemma:

Lemma 3.2.3 Suppose T is an L-labelled proof tree with unmarked assump-
tions ϕ1, . . . , ϕn and conclusion ψ; let u1, . . . , uk be a list of all variables that
are free in at least one of ϕ1, . . . , ϕn, ψ. Then for every L-structure M and
any k-tuple m1, . . . ,mk of elements of M , we have:

If for all i, 1 ≤ i ≤ n, M |= ϕi[m1/u1, . . . ,mk/uk], then
M |= ψ[m1/u1, . . . ,mk/uk].

Exercise 91 Prove yourself, that Lemma 3.2.3 implies Theorem 3.2.1.

Proof. Lemma 3.2.3 is proved by a straightforward induction on proof trees:
let A be the set of L-labelled proof trees which satisfy the condition of the
lemma, w.r.t. every L-structure M .

Clearly, A contains every assumption tree ϕ. Now we should show that
A is closed under all the constructions of definition 3.1.3. In most cases, a
quick inspection suffices. We shall treat a few cases, leaving the others for
you to check.

Let us write ϕi[~m/~u] for ϕi[m1/u1, . . . ,mk/uk].
Suppose T is formed by →-introduction from S ∈ A; say S has conclusion

ψ and T has conclusion φ → ψ. Suppose the unmarked assumptions of S
other than φ, are ϕ1, . . . , ϕn, and let u1, . . . , uk be a list of variables as in
the lemma, for S. Then if M is an L-structure and m1, . . . ,mk ∈ M , the
induction hypothesis (viz., S ∈ A) gives us that if M |= φ[~m/~u] and for all
i ≤ n, M |= ϕi[~m/~u], then M |= ψ[~m/~u]. Then clearly, if M |= ϕi[~m/~u] for
each i ≤ n, also M |= (φ→ ψ)[~m/~u]. So T ∈ A.

Suppose T is formed by ∀-introduction from S ∈ A. Suppose S has
unmarked assumptions ϕ1, . . . , ϕn and conclusion ψ(v), and v does not occur
in ϕ1, . . . , ϕn. The induction hypothesis gives us that for any L-structure
M and any tuple ~m, p from M , if for each i ≤ n M |= ϕi[~m/~u] then M |=
ψ[~m/~u, p/v]. Therefore, if for each i ≤ n M |= ϕi[~m/~u], then for all p ∈M ,
M |= ψ[~m/~u, p/v]; in other words M |= (∀xψ[x/v])[~m/~u]. Hence T ∈ A.

Suppose T is formed by ∃-elimination from elements S, S′ of A. So
the conclusion of S is ∃vφ, the conclusion of S′ is χ, and S′ has possibly
unmarked assumptions of form φ[w/x] where w does not occur in any other
unmarked assumption of S′, nor in φ, nor in χ. Let ~u be the list of free
variables appearing in an unmarked assumption of T or in χ. Let ~m be a
tuple of elements of M of the same length as ~u.

Suppose that M |= ϕ[~m/~u] for each unmarked assumption ϕ of T . We
need to show that M |= χ[~m]. A little care is needed, for when we wish to
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apply the induction hypothesis to the trees S and S′, we face the apparent
problem that the formula ∃vφ, which may not occur as unmarked assump-
tion or as conclusion of T , may contain free variables ~y not among the ~u.
So let’s write ∃vφ(~u, ~y, v), displaying all the variables. Now the induction
hypothesis for S tells us that for every tuple ~n of M of the same length as ~y,
M |= ∃vφ(~m,~n, v). Since M is nonempty, just pick any such tuple ~n0 from
M . Then, choose a ∈ M such that M |= φ(~m,~n0, a). Now the induction
hypothesis for S′ (with the tuple ~m,~n0, a for the variables ~u, ~y,w) tells us
that M |= χ(~m), as desired.

Exercise 92 Supply yourself the induction step for the case of ∨-elimination,
in the proof above.

For the proof of the Completeness Theorem (3.2.2), first we observe that
Γ |= φ is equivalent to Γ ∪ {¬φ} |= ⊥, and that Γ ⊢ φ is equivalent to
Γ ∪ {¬φ} ⊢ ⊥.

Exercise 93 Prove these facts.

Therefore, the statement of 3.2.2 reduces to the special case: if Γ |= ⊥, then
Γ ⊢ ⊥. We shall prove the contrapositive of this, viz.: if Γ 6⊢ ⊥, then Γ has
a model.

Remark. As we have defined it in Chapter 2, “Γ is consistent” means “Γ
has a model”. In the literature, “Γ is consistent” is often defined as “Γ 6⊢ ⊥”.
By the Soundness and Completeness Theorems, the two definitions agree.
But we haven’t proved the Completeness Theorem yet. Therefore, we shall
say that Γ is formally consistent if Γ 6⊢ ⊥.

A set Γ of L-sentences is said to be maximally formally consistent if Γ is
formally consistent but no proper extension Γ′ ⊃ Γ is.

Exercise 94 Suppose Γ is a maximally formally consistent set of L-sentences.
Show that for any two L-sentences φ and ψ it holds that Γ ⊢ φ ∨ ψ if and
only if either Γ ⊢ φ or Γ ⊢ ψ.
[Hint: for the ‘only if’ direction, if Γ 6⊢ φ, then Γ ∪ {¬φ} is a formally con-
sistent extension of Γ]
Prove also, that for any L-sentence φ, either φ ∈ Γ or ¬φ ∈ Γ

We shall furthermore say that a set Γ of L-sentences has enough constants,
if for every L-formula ϕ(x) with one free variable x, there is a constant c
such that

Γ ⊢ ∃xϕ(x) → ϕ(c)
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Lemma 3.2.4 Let Γ be a maximally formally consistent set of L-sentences
such that Γ has enough constants. Then Γ has a model.

Proof. Let C be the set of constants of L. Then C 6= ∅ (why?). We put an
equivalence relation ∼ on C by:

c ∼ d if and only if Γ ⊢ (c = d)

It is easily verified (see Example f) of section 3.1.1) that ∼ is an equivalence
relation. The set M = C/ ∼ of equivalence classes is made into an L-
structure as follows.

If F is an n-ary function symbol of L and c1, . . . , cn ∈ C, then Γ ⊢
∃x(F (c1, . . . , cn) = x); since Γ has enough constants, there is a constant c
such that Γ ⊢ F (c1, . . . , cn) = c; define FM by FM ([c1], . . . , [cn]) = [c]. This
is independent of the choices for c and the representatives c1, . . . , cn, for if
ci ∼ di for i = 1, . . . , n and c ∼ d, we have easily Γ ⊢ F (d1, . . . , dn) = d by
a number of Substitution constructions on the corresponding proof trees.

Similarly, if R is an n-place relation symbol we put

RM = {([c1], . . . , [cn]) |Γ ⊢ R(c1, . . . , cn)}

and again one checks that this is well-defined.
Finally, if c is a constant of L we let cM = [c]. This completes the

definition of M as L-structure.
Now let t be a closed L-term. It is easily seen by induction on t that if c

is a constant such that Γ ⊢ (t = c) (and such a constant exists, since Γ has
enough constants), then tM = [c]. Therefore, if s and t are closed L-terms,
we have:

M |= (t = s) if and only if Γ ⊢ (t = s)

We shall now prove that for every L-sentence φ,

M |= φ if and only if Γ ⊢ φ

by induction on φ.
If φ is R(c1, . . . , cn), this holds by definition. Hence, since every closed term
is equal to some constant as we have just seen, the claim also holds for
sentences R(t1, . . . , tn) where the ti are closed terms.
Suppose φ is ψ ∨χ. Then M |= φ if and only if (by definition of |=) M |= ψ
or M |= χ, if and only if (by induction hypothesis) Γ ⊢ ψ or Γ ⊢ χ, if and
only if (by Exercise 94, since Γ is maximally formally consistent) Γ ⊢ ψ ∨χ.
The step for ¬ψ is similar, and the steps for ∧ and → are left to you.
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Now suppose φ is ∀xψ(x). We see that M |= φ is equivalent to: for all
constants c of L, M |= ψ(c). By induction hypothesis, this is equivalent to:
for all constants c of L, Γ ⊢ ψ(c). This obviously follows from Γ ⊢ ∀xψ(x).
For the converse, using that Γ has enough constants, pick a c such that
Γ ⊢ ∃x¬ψ(x) → ¬ψ(c). Then since Γ ⊢ ψ(c), we must have Γ ⊢ ¬∃x¬ψ(x).
By one of the items of Exercise 88, Γ ⊢ ∀xψ(x).
Again, the case for φ ≡ ∃xψ(x) is similar, and omitted.

We see that M is a model of Γ, which was to be proved.

The following lemma now links Lemma 3.2.4 to Theorem 3.2.2.

Lemma 3.2.5 Let Γ be a formally consistent set of L-sentences. Then there
is an extension L′ of L by constants, and a set ∆ of L′-sentences which
extends Γ, is maximally formally consistent and has enough constants.

Before proving Lemma 3.2.5, let us wrap up the argument for Theorem 3.2.2
from it: given a formally consistent Γ, take ∆ as in Lemma 3.2.5. By
Lemma 3.2.4, ∆ has a model M . This is an L′-structure, but by restricting
the interpretation to L it is also an L-structure. Since Γ ⊆ ∆, the structure
M is a model of Γ, as desired.

Proof. Fix a set C, disjoint from L, such that |C| = ||L|| = max(ω, |L|).
Then C is infinite, so by Exercise 19a), |C| = ω × |C|; therefore, we can
write C as a disjoint union:

C =
⋃

n∈N

Cn

such that for each n ∈ N, |Cn| = |C|.
Let L0 be L, and Ln+1 = Ln ∪ Cn, where the elements of Cn are new

constants. By induction, one sees that ||Ln|| = ||L|| = |C|. It follows, that
for each n, there is an injective function from the set

Fn = {ϕ(x) |ϕ(x) is an Ln-formula with one free variable x}

to the set Cn; we denote this map by ϕ(x) 7→ cϕ(x).
We let L′ be

⋃

n∈N Ln. We construct Γ′ as
⋃

n∈N Γn, where Γ0 = Γ and

Γn+1 = Γn ∪ {∃xϕ(x) → ϕ(cϕ(x)) |ϕ(x) ∈ Fn}

First, we prove the following fact:

(*) If Γn+1 ⊢ φ, where φ is an Ln-sentence, then also Γn ⊢ φ (We say that
Γn+1 is conservative over Γn).
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Since every proof tree has only finitely many assumptions, we see that if
Γn+1 ⊢ φ there are ϕ1(x), . . . , ϕm(x) ∈ Fn, such that

Γn ∪ {∃xϕi(x) → ϕi(cϕi(x)) | 1 ≤ i ≤ m} ⊢ φ

Combining Exercise 87 and the equivalences of Exercise 88, this is equivalent
to (check!):

Γn ⊢
m∨

i=1

¬(∃xϕi(x) → ϕi(cϕi(x))) ∨ φ

Now the constants cϕi(x) are not in Ln, hence don’t occur in Γn or in φ. It
follows from Example 3 in section 3.1.2, that

Γn ⊢ ∀u1 · · · um[(
m∨

i=1

¬(∃xϕi(x) → ϕi(ui)) ∨ φ]

By repeated use of ⊢ ∀x(χ ∨ ψ(x)) → (χ ∨ ∀xψ(x)) (see Example j of
section 3.1.1), and ⊢ ¬(α→ β) → (α ∧ ¬β),

Γn ⊢
m∨

i=1

(∃xϕi(x) ∧ ∀ui¬ϕi(ui)) ∨ φ

It follows, since ⊢ (∃xϕi(x) ∧ ∀ui¬ϕi(ui)) → ⊥ (check!), that Γn ⊢ ⊥ ∨ φ
hence Γn ⊢ φ. This proves (*).

From (*) it follows that Γ′ is formally consistent. For suppose Γ′ ⊢ ⊥.
Again using that every proof tree is finite, one finds that already Γn ⊢ ⊥ for
some n; then by induction, using (*) one finds that Γ ⊢ ⊥ which contradicts
the assumption that Γ is formally consistent.

It is easy to see that Γ′ has enough constants; every formula contains
only finitely many constants, so every L′-formula is an Ln-formula for some
n. So a required constant for it will be in Ln+1 by construction.

Now clearly, if a set of sentences has enough constants, then every bigger
set also has enough constants. Therefore it suffices to show that Γ′ can be
extended to a maximally formally consistent set of L′-sentences; this is done
with the help of Zorn’s Lemma (Definition 1.2.8).

Let P be the set of those sets of L′-sentences that contain Γ′ and are
formally consistent; P is ordered by inclusion. P is nonempty, for Γ′ ∈ P as
we have seen. If K is a chain in P then

⋃K is formally consistent. Indeed,
if

⋃K ⊢ ⊥ then already Z ⊢ ⊥ for some Z ∈ K (compare with the proof
above that Γ′ is formally consistent). By Zorn’s Lemma, P has a maximal
element ∆. Then ∆ is maximally formally consistent, as is left for you to
check; which finishes the proof.
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Corollary 3.2.6 (Compactness Theorem (2.5.1)) If Γ is a set of sen-
tences in a given language, and every finite subset of Γ has a model, then Γ
has a model.

Proof. Suppose Γ doesn’t have a model. By the Completeness Theorem,
Γ ⊢ ⊥. Then, as we have seen a few times before, already Γ′ ⊢ ⊥ for some
finite Γ′ ⊆ Γ. But this contradicts the Soundness Theorem, because Γ′ has
a model by assumption.

Exercise 95 Show that our proof of the Completeness Theorem has the
corollary, that every formally consistent set of L-sentences has a model of
cardinality at most ||L||. Compare this to Theorem 2.8.3.

3.3 Skolem Functions

Definition 3.3.1 Let L be a language. A Skolem Theory is an L-theory ∆
with the property that for every L-formula ϕ(~x, y) with n+ 1 free variables,
there is a function symbol F such that

∆ ⊢ ∀~x (∃yϕ(~x, y) → ϕ(~x, F (~x)))

In the case n = 0, we take this to mean that for ϕ(y) there is a constant c
such that ∆ ⊢ ∃yϕ(y) → ϕ(c).

Recall that if we have two languages L ⊆ L′ and two theories T ⊆ T ′ such
that T is an L-theory and T ′ is an L′-theory, T ′ is said to be conservative over
T if every L-sentence which is a consequence of T ′ is already a consequence
of T .

Exercise 96 Suppose that we have an infinite chain

L1 ⊆ L2 ⊆ · · ·

of languages, and also a chain

T1 ⊆ T2 ⊆ · · ·

of theories, such that for each n, Tn is an Ln-theory. Let L =
⋃

n≥1 Ln, and
T =

⋃

n≥1 Tn. Then T is an L-theory.

Prove, that if Tn+1 is conservative over Tn for each n ≥ 1, then T is
conservative over T1.
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Theorem 3.3.2 Let Γ be an L-theory. Then there is an extension L′ of L,
and a Skolem theory ∆ in L′ extending Γ, which is conservative over Γ.

Proof. First, we show the following: for every L-theory Γ there is an
extension L′ of L and an L′-theory ∆, such that Γ ⊆ ∆, ∆ is conservative
over Γ and for every L-formula ϕ(~x, y) with n + 1 free variables, there is a
function symbol F in L′, such that

∆ ⊢ ∀~x (∃yϕ(~x, y) → ϕ(~x, F (~x)))

Let L′ be the extension of L obtained in the following way: for every L-
formula ϕ and every string (x1, . . . , xk, y) = (~x, y) of variables such that
all free variables of ϕ occur in ~x, y, add a k-ary function symbol Fϕ~x,y. Let

∆ be the set of L′-sentences defined as the union of Γ and the set of all
L′-sentences of the form

∀~x(∃yϕ→ ϕ[Fϕ~x,y(~x)/y])

where ϕ is an L-formula and (~x, y) as above (the set ∆ is said to be an
extension of Γ by Skolem functions).

Exercise 97 Show that every model of Γ can be made into an L′-structure
which is a model of ∆, by choosing appropriate functions as interpretations
for the Fϕ~x,y. Then use the Completeness Theorem to conclude that ∆ is
conservative over Γ.

In order to prove the theorem, we iterate this construction infinitely often:
let L1 = L, and T1 = Γ. Suppose Ln and Tn have been defined; let Ln+1

and Tn+1 then be the extended language and the extended theory which are
obtained from Ln and Tn by the construction above.

Finally, let L′ =
⋃

n≥1 Ln and ∆ =
⋃

n≥1 Tn. By Exercise 96, ∆ is
conservative over Γ. The proof that ∆ is a Skolem theory is left to you.

Exercise 98 Finish the proof of Theorem 3.3.2: prove that the constructed
theory ∆ is in fact a Skolem theory.

Exercise 99 Let ∆ be a Skolem theory, M |= ∆, and X ⊆ M . Let 〈X〉
be the substructure of M generated by X. Prove that 〈X〉 is an elementary
substructure of M .

Exercise 100 Prove the following strengthening of the previous exercise:
every Skolem theory has quantifier elimination.



Chapter 4

Sets Again

This short chapter aims to give you a nodding acquaintance with the formal
theory of sets, which is accepted by most mathematicians as a foundation
for mathematics.

Set theory, as we saw in the introduction to Chapter 1, was founded
by Cantor. We have seen already many results by Cantor in these lecture
notes: the Schröder-Cantor-Bernstein Theorem, the uncountability of R, the
diagonal argument, the Cantor Set, the notion of cardinal number and the
Continuum Hypothesis, and in Chapter 2 the ω-categoricity of the theory
of dense linear orders. The notion of ‘ordinal number’, which we shall see
in this chapter, is also due to him and there is lots more.

Cantor was not a logician, and his idea of ‘sets’ was not very precise;
basically, a set could be formed by grouping together all objects sharing a
certain property. This approach was also taken by Frege, one of the first
pioneers in logic.

However, there is a problem with this approach, which was pinpointed
by Bertrand Russell in 1903 (this is the ‘antinomy’ we alluded to in the
introduction to Chapter 2). Consider the set N of natural numbers. Clearly,
N is not a natural number, so it is not an element of N: N 6ǫN. Now, Russell
continued, let us ‘group together’ into a set all those sets which are not
elements of themselves: let

R = {x |x6ǫx}

Suppose R is a set. Then the question as to whether or not RǫR, makes
sense. But by definition of R, we find that RǫR precisely when R 6ǫR! This
is clearly a contradiction, which is known as “Russell’s Paradox”.1

1There is a real life version of the same paradox, about the “village barber, who shaves

99
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4.1 The Axioms of ZF(C)

Mindful of Russell’s paradox, Ernst Zermelo (1871–1953), whom we know
from the Axiom of Choice and the Well-Ordering Theorem, formulated care-
fully a system of axioms for sets in [28] (1908). One of the basic ideas is
that one can group together all objects from a given set which have a certain
property, to form a new set: instead of allowing {x |P (x)} to be a set, we
declare that {x ∈ X |P (x)} is always a set provided X is one (this is the
Axiom Scheme of Separation below).

Zermelo’s set theory (often denoted Z) is still an interesting object of
study, but for mathematical purposes it is too weak, as was soon discov-
ered. In 1922, the Axiom Scheme of Replacement was proposed by Fraenkel.
The resulting system is called Zermelo-Fraenkel set theory, and denoted ZF.
When the Axiom of Choice is added, we write ZFC.

The theory ZFC is formulated in the language {ǫ}, where ǫ is a 2-place
relation symbol expressing ‘is an element of’. We only talk about sets and
elementhood. What does it mean to say that this theory is a “foundation
for mathematics”? It means that all constructions from the basic set theory
we developed in Chapter 1 can be defined in ZFC, and that all sets and
functions used in mathematics, can be regarded as elements of any model
of ZFC. It is therefore possible to do as if every mathematical theorem is a
theorem about sets.
We now list the axioms.

1) Axiom of Extensionality
∀x∀y(∀z(zǫx↔ zǫy) → x = y)
Sets are equal if they have the same elements.

2) Axiom of Pairing
∀x∀y∃z∀w(wǫz ↔ (w = x ∨ w = y))
For each x and y, {x, y} is a set.

3) Axiom Scheme of Separation
For every formula φ not containing the variable y, we have an axiom
∀x∃y∀w(wǫy ↔ (wǫx ∧ φ))
For each set x and property φ, {wǫx |φ} is a set.

4) Axiom of Union
∀x∃y∀w(wǫy ↔ ∃z(zǫx ∧ wǫz))
For every set x,

⋃
x (or

⋃

zǫx z) is a set.

every villager who does not shave himself”. Does the barber shave himself?
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5) Axiom of Power Set
∀x∃y∀w(wǫy ↔ ∀z(zǫw → zǫx))
For every set x, P(x) is a set.

6) Axiom of Infinity
Since ∃x(x = x) is a valid sentence, there is a set; if x is a set then
by Separation there is a set {wǫx | ⊥} which has no elements; and
this set is unique, by Extensionality. We denote this empty set by
∅. Also, for any set x, we have a set {x} = {x, x} by Pairing, and
x ∪ {x} =

⋃{x, {x}} using again Pairing, and Union. With these
notations, the axiom of Infinity is now

∃x(∅ǫx ∧ ∀y(yǫx→ (y ∪ {y})ǫx))

This will turn out to mean: “there is an infinite set”.

7) Axiom Scheme of Replacement
For any formula φ which does not contain the variable y:

∀a∃b∀c(φ(a, c) ↔ c = b) →
∀x∃y∀v(vǫx→ ∃u(uǫy ∧ φ(v, u)))

The premiss expresses that φ defines an operation F on sets. The
axiom says that for any such operation F and any set x, there is a set
y which contains {F (v) | vǫx} (it follows then by Separation, that in
fact the latter is a set).

8) Axiom of Regularity
∀x(x 6= ∅ → ∃y(yǫx ∧ ∀z¬(zǫy ∧ zǫx)))
Every nonempty set x has an element that is disjoint from x.

The regularity axiom (together with Pairing) implies that no set can be an
element of itself, for if xǫx then the set {x} does not contain an element
disjoint from itself (check!). This has the following two consequences:

1) x is always a proper subset of x ∪ {x}, so that any set satisfying the
statement of the Axiom of Infinity is in fact infinite;

2) There can be no ‘set of all sets’, because such a set would be an
element of itself. We see that the Russell paradox is resolved: the ‘set’
R = {x |x6ǫx} would have to be the set of all sets! Therefore, R is not
a set.
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Classes and Sets. A class is a collection of all sets satisfying a given
property. For us, a class is given by a formula φ(x) with one free variable x.
Such a class is a set, if ∃y∀x(φ(x) ↔ xǫy) holds. Note that, by Separation,
every subclass of a set is a set.

Using Pairing, we have for each set x and each set y the set

{{x}, {x, y}}

which we denote (x, y) and call the ordered pair of x and y.

Exercise 101 Show:

a) (x, y) = (u, v) ↔ x = u ∧ y = v

b) x × y = {(u, v) |uǫx ∧ vǫy} is a set (Hint: use that for uǫx and vǫy,
(u, v) is a subset of P(x ∪ y))

A relation from x to y is a subset of x× y. Such a relation R is a function
if ∀uǫx∃vǫy∀wǫy((u,w)ǫR↔ v = w) holds.

Exercise 102 Show that for every two sets x and y, there is a set yx of all
functions from x to y.

The Axiom of Choice can now be formulated:

∀x∀y∀fǫyx[∀vǫy∃uǫx((u, v)ǫf) →
∃gǫxy∀vǫy∀uǫx((v, u)ǫg → (u, v)ǫf)]

A poset is an ordered pair (x, r) such that rǫP(x × x) is a relation which
partially orders x: i.e. ∀uǫx((u, u)ǫr) etcetera. Similarly, we can define the
notions of a linear order and a well-order.

Exercise 103 Carry this out.

Remark on Notation. We have started to use a lot of symbols which
are not part of the language {ǫ}: P(x),

⋃
x, {yǫx | . . .}, etc. You should

see these as abbreviations. Everything we express with these symbols can,
equivalently, be said without them. For example if φ(v) is a formula then
the expression φ(P(x)) is short for:

∃y[∀v(vǫy ↔ ∀w(wǫv → wǫx)) ∧ φ(y)]

or equivalently

∀y[∀v(vǫy ↔ ∀w(wǫv → wǫx)) → φ(y)]
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In principle, we could now translate every informal statement about sets in
Chapter 1 into a formula of ZF, and prove it from the ZF-axioms by natural
deduction trees. This is long and tedious, but possible. Let us here just
stress these two points:

1) The theory ZF, augmented by the Axiom of Choice where necessary,
suffices to prove all the theorems and propositions of Chapter 1.

2) Once one has formulated ZF as a first-order theory, the question
whether or not a particular statement can be proved from it (ZF ⊢ φ?)
gets a precise mathematical meaning.

4.2 Ordinal numbers and Cardinal numbers

A set x is transitive if ∀yǫx∀uǫy(uǫx) holds.

Exercise 104 Prove that x is transitive iff ∀yǫx(P(y) ⊂ P(x)); and also
that x is transitive iff x ⊂ P(x).

Examples. ∅ is transitive; {∅} too. {{∅}} is not transitive. If x and y are
transitive, so is x ∪ y, and if x is transitive, so is x ∪ {x}.

A set x is an ordinal number (or just ordinal) if x is transitive and well-
ordered by the relation ǫ. This means: x is an ordinal if the conditions

∀yǫx∀vǫy(vǫx)
∀y ⊆ x(y 6= ∅ → ∃vǫy∀wǫy(v 6= w → vǫw))

hold.

Exercise 105 Check that these conditions indeed imply that ǫ is a linear
order on x, and that it is a well-order.

Normally, we use Greek lower-case characters in the first half of the alphabet:
α, β, γ,. . . for ordinals.

Theorem 4.2.1

a) ∅ is an ordinal.

b) If α is an ordinal then every βǫα is an ordinal.

c) If α and β are ordinals then α ( β → αǫβ.

d) If α and β are ordinals then α ⊆ β or β ⊆ α.
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Proof. a) is immediate and b) is left as an exercise.
For c), suppose α ( β. Let γ be the ǫ-least element of β − α. Then

γ ⊆ α. On the other hand, if xǫα then x = γ and γǫx are impossible by
definition of γ and the fact that α is transitive. Therefore, since β is an
ordinal, xǫγ must hold. So α ⊆ γ; hence α = γ and so αǫβ, as required.

Part d) is proved by similar reasoning: suppose α 6⊆ β. Let γ be an
ǫ-minimal element of α − β. Then γ ⊆ β. If γ = β then βǫα hence β ( α
by transitivity of α; if γ ( β then γǫβ by c), which contradicts the choice
of γ.

Exercise 106 Prove part b) of Theorem 4.2.1. Prove also that if α and β
are ordinals, then either αǫβ, or α = β, or βǫα holds.

Let Ord be the class of ordinal numbers. For ordinals α, β we write α < β
for αǫβ. By Theorem 4.2.1, < is a linear order on Ord. It is, actually, in a
sense a well-order, as follows from the next theorem.

Theorem 4.2.2

a) Every nonempty subclass of Ord has a <-least element; in fact, if C
is a nonempty class of ordinals, then

⋂
C belongs to C.

b) For every set x of ordinals,
⋃
x is an ordinal, and it is the least ordinal

α such that β ≤ α for all βǫx.

c) For every ordinal α, α+ 1 = α ∪ {α} is an ordinal, and it is the least
ordinal > α.

Proof. For a), if C is defined by a formula φ(x) such that ∀x(φ(x) →
x is an ordinal) and x is such that φ(x) holds, then x is an ordinal and
x ∩C = {yǫx |φ(y)} is a set, a subset of x. If x ∩C = ∅, then x is the least
element of C; otherwise, since x is an ordinal, x ∩ C has an ǫ-least element
in x. We leave the details to you.

Exercise 107 Fill in the details of the proof above for part a); prove your-
self parts b) and c) of Theorem 4.2.2.

Theorem 4.2.2 suggests that, in analogy to Theorem 1.3.5, there might also
be a principle of ‘definition by recursion on Ord’. This is in fact the case,
but requires a little care in formulating.

Recall (from the introduction to the axiom of Replacement) that a for-
mula φ(x, y) defines an operation on sets if

∀x∃y∀z(φ(x, z) ↔ y = z)
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holds. We say that φ(x, y) defines an operation on ordinals if

∀x(x ∈ Ord → ∃y∀z(φ(x, z) ↔ y = z))

holds, where ‘x ∈ Ord’ is the formula expressing that x is an ordinal.
Suppose φ(x, y) defines an operation on sets, which we call F . Then

we use expressions like {F (x) |xǫy} as shorthand; if ψ is a formula, the
expression ψ({F (x) |xǫy}) should be taken to mean

∃z(∀w(wǫz ↔ ∃x(xǫy ∧ φ(x,w))) ∧ ψ(z))

Theorem 4.2.3 (Transfinite recursion on Ord) For every operation F
on sets there is a unique operation G on Ord such that for all ordinals α the
following holds:

G(α) = F ({G(β) |βǫα})

Proof. Define G by the following formula ψ(α, x):

ψ(α, x) ≡ ∃y∃fǫyα
(

∀ξǫα(f(ξ) = F ({f(η) | ηǫξ}))∧
x = F ({f(ξ) | ξǫα})

)

The proof that ψ defines an operation G on Ord with the stated property,
is left to you.
Examples of Ordinals. 0 = ∅, 1 = {0} = {∅}, 2 = {∅, {∅}} = {0, 1},
3 = {0, 1, 2},. . . are ordinals. Let x be a set as postulated by the axiom of
Infinity, so ∅ǫx∧∀y(yǫx→ y∪{y}ǫx). Let ω be the intersection of all subsets
of x which contain ∅ and are closed under the operation y 7→ y ∪ {y}:

ω = {uǫx | ∀rǫP(x)((∅ǫr ∧ ∀v(vǫr → v ∪ {v}ǫr)) → uǫr)}

Then ω is an ordinal, the least infinite ordinal. We think of it as

ω = {0, 1, 2, . . .}

We have then, by 4.2.2c), also the ordinals ω+1, ω+2,. . . . One can show that
there is a set of ordinals {ω+n |nǫω} and hence an ordinal ω+ω = ω·2. Con-

tinuing, there is ω·3,. . . up to ω·ω = ω2. Then, ω3,. . . ,ωω,. . . ,ωω
ω

,. . . ,ωω
·
·

.
All these ordinals are countable!

Exercise 108 (Addition and Multiplication of ordinals) By transfinite
recursion (4.2.3) we define operations of addition and multiplication on Ord,
as follows:

α+ β =

{
α if β = 0

⋃{(α+ γ) + 1 | γǫβ} otherwise
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and

α·β =

{
0 if β = 0

⋃{(α·γ) + α | γǫβ} else

a) Show that γ < β implies α+ γ < α+ β, and (if α 6= 0) α·γ < α·β

b) Show: 0 + β = β and 0·β = 0

c) Show: α+ (β + 1) = (α+ β) + 1 and α·(β + 1) = (α·β) + α

d) Show that for any nonempty set of ordinals x,

α+
⋃

x =
⋃

{α + β |βǫx}

e) Show that for α 6= 0 and any set of ordinals x,

α·
⋃

x =
⋃

{α·β |βǫx}

f) Show that 1 + ω = ω 6= ω + 1, and 2·ω = ω 6= ω·2

Theorem 4.2.4 Every well-ordered set is isomorphic (as well-ordered set)
to a unique ordinal number.

Proof. Let (X,<) be a well-ordered set. We use the principle of induction
over X to show that for each xǫX there is a unique ordinal F (x) such that
{yǫX | y < x} ∼= F (x). For successor elements x+1, let F (x+1) = F (x)+1 =
F (x) ∪ {F (x)}; if l is a limit element, one proves that {F (x) |x < l} is an
ordinal which is isomorphic to {yǫX | y < l}. Similarly now, {F (x) |xǫX}
is an ordinal (it is a set by the Replacement axioms) which is isomorphic to
(X,<).

Now recall Hartogs’ Lemma, which states that for any set X there is a
well-order (W,<) such that W cannot be mapped injectively into X; by
Theorem 4.2.4 there is an ordinal which cannot be mapped injectively into
X, and by 4.2.2a), there is a least such ordinal. Taking X = ω, we see that
there is a least uncountable ordinal , which we denote by ω1.

The ordinals 0, 1, 2, . . . , ω and ω1 are examples of cardinal numbers. A car-
dinal number is an ordinal κ such that for every α ∈ κ, there is no bijection
between α and κ.

If one assumes the Axiom of Choice, every set X can be well-ordered and
is therefore in bijective correspondence with an ordinal; taking the least such
ordinal, one associates to every set X a unique cardinal number κ such that
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there is a bijection between X and κ; we may write |X| for κ. If we write
2κ for |P(κ)| then the Continuum Hypothesis has a compact formulation:
2ω = ω1.

Without the Axiom of Choice one can still formulate the Continuum
Hypothesis but one can no longer prove that to every set corresponds a
unique cardinal number as above.

There is a 1-1, surjective mapping from the class Ord of ordinals into
the class of all infinite cardinal numbers, defined as follows: ℵ0 (pronounce:
“aleph–zero”) is ω; if ℵα is defined, ℵα+1 is the least cardinal number greater
than ℵα; if λ is a limit ordinal (that is, an ordinal not of the form α + 1),
then ℵλ =

⋃{ℵβ |β < λ}.

Exercise 109 Show that ℵα is a cardinal for each α. Show also that for
each infinite cardinal κ there is a unique ordinal α such that κ = ℵα.

One can prove, without the Axiom of Choice, that |ℵα × ℵα| = ℵα for each
α. You should compare this to Proposition 1.18.

4.3 The real numbers

The real numbers are constructed as follows. From ω, construct Z as the set
of equivalence classes of ω×ω under the equivalence relation: (n,m) ∼ (k, l)
iff n + l = m + k. There are then well-defined operations of addition and
multiplication on Z. Define an equivalence relation on the set of those pairs
(k, l) of elements of Z such that l 6= 0, by putting (k, l) ∼ (r, s) iff ks = lr.
The set of equivalence classes is Q, the set of rational numbers. Q is an
ordered field , that is a field with a linear order < such that

i) r > s→ r + t > s+ t

ii) r > s > 0, t > 0 → rt > st

hold.
A Dedekind cut in Q is a nonempty subset A ⊂ Q such that:

i) aǫA, a′ < a→ a′ǫA

ii) Q −A 6= ∅

iii) ∀aǫA∃bǫA(a < b)

R is the set of Dedekind cuts in Q, ordered by inclusion. Q is included in R

via the embedding ι : q 7→ {rǫQ | r < q}.
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Exercise 110 Show that there are operations +, · on R, making R into an
ordered field which extends the ordered field Q.

Suppose A is a set of elements of R which is bounded. Then
⋃A is an

element of R; the least upper bound of A. So R is complete. Moreover, Q is
dense in R: if A,B ∈ R and A ( B, there is a qǫQ such that A ( ι(q) ( B.
From this, it follows that R is a so-called Archimedean ordered field: that is,
an ordered field such that for each a there is a natural number n such that
a < ι(n). The following theorem, stated without proof (but the proof is not
hard) characterizes the real numbers up to isomorphism.

Theorem 4.3.1 There exists, up to order-isomorphism, exactly one com-
plete Archimedean ordered field, the field of real numbers.
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