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Chapter 1

Introduction

It is no longer possible to present perturbative
Field Theory pedagogically in one year – the days
of the standard one-year course based on QED are
gone forever.

Pierre Ramond
Field Theory: a modern primer.

The main recommended book

M. E. Peskin and D. V. Schroeder. “An Introduction to Quantum Field Theory”, Perseus Books,
The Advanced Book Program (Reading, MA).
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Chapter 2

Classical fields and symmetries

This chapter is dedicated to reviewing of some of the important prerequisites for study quantum field
theory. It includes the Lagrangian description of classical systems with an infinite number of degrees
of freedom and the first Noether theorem, which allows one to construct dynamical invariants, i.e.
the quantities remaining invariant under the time evolution. This material is assumed to be largely
known and, therefore, is delegated for self-activating.

2.1 Continuous systems in classical mechanics

To describe continuous systems, such as vibrating solid, a transition to an infinite number of degrees
of freedom is necessary. Indeed, one has to specify coordinates of all the points which are infinite
in number. In fact, the continuum case can be reached by taking an appropriate limit of a system
with a finite number of discrete coordinates. Our first example is an elastic rod of fixed length `
which undergoes small longitudinal vibrations. We approximate the rod by a system of equal mass
m particles spaced a distance ∆a apart and connected by uniform massless springs having the force
constant k. The total length of the system is ` � pn�1q∆a. We describe the displacement of the ith
particle from its equilibrium position by the coordinate φi. Then the kinetic energy of the particles
is

T �
ņ

i�1

m

2
9φ2
i .

The potential energy is stored into springs and it is given by the sum

U � 1

2
k

ņ

i�0

pφi�1 � φiq2 .

Here we associate φ0 � 0 � φn�1 with the end points of the interval which do not move. The force
acting on ith particle is Fi � � BU

Bφi :

Fi � kpφi�1 � φi�1 � 2φiq .

This formula shows that the force exerted by the spring on the right of the ith particle equals to
kpφi�1 � φiq, while the force exerted from the left is kpφi � φi�1q. The Lagrangian is

L � T � U �
ņ

i�1

m

2
9φ2
i �

1

2
k

ņ

i�0

pφi�1 � φiq2 .
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At this stage we can take a continuum limit by sending nÑ 8 and ∆aÑ 0 so that ` � pn� 1q∆a
is kept fixed. Increasing the number of particles we will be increasing the total mass of a system.
To keep the total mass finite, we assume that the ratio m{∆aÑ µ, where µ is a finite mass density.
To keep the force between the particles finite, we assume that in the large particle limit k∆aÑ Y ,
where Y is a finite quantity. Thus, we have

L � T � U � 1

2

ņ

i�1

∆a
� m

∆a

	
9φ2
i �

1

2

ņ

i�0

∆apk∆aq
�φi�1 � φi

∆a

	2

.

Taking the limit, we replace the discrete index i by a continuum variable x. As a result, φi Ñ φpxq.
Also

φi�1 � φi
∆a

Ñ φpx�∆aq � φpxq
∆a

Ñ Bxφpxq .
Thus, taking the limit we find

L � 1

2

» `
0

dx
�
µ 9φ2 � Y pBxφq2

�
.

Also equations of motion can be obtained by the limiting procedure. Starting from

m

∆a
:φi � k∆a

φi�1 � φi�1 � 2φi
∆a2

� 0,

and using

lim
∆aÑ0

φi�1 � φi�1 � 2φi
∆a2

� B2φ

Bx2
� Bxxφ

we obtain the equation of motion
µ:φ� Y Bxxφ � 0 .

Just as there is a generalized coordinate φi for each i, there is a generalized coordinate φpxq for
each x. Thus, the finite number of coordinates φi has been replaced by a function of x. Since φ
depends also on time, we are dealing with the function of two variables φpx, tq which is called the
displacement field. The Lagrangian is an integral over x of the Lagrangian density

L � 1

2
µ 9φ2 � 1

2
Y pBxφq2 .

The action is a functional of φpx, tq:

Srφs �
» t2
t1

dt

» `
0

dxL pφpx, tq, 9φpx, tq, Bxφpx, tqq .

It is possible to obtain the equations of motion for the field φpx, tq directly from the continuum
Lagrangian. One has to understand how the action changes under an infinitesimal change of the
field

φpx, tq Ñ φpx, tq � δφpx, tq . (2.1)

The derivatives change accordingly,

B
Btφpx, tq Ñ

B
Btφpx, tq �

B
Btδφpx, tq , (2.2)

B
Bxφpx, tq Ñ

B
Bxφpx, tq �

B
Bxδφpx, tq . (2.3)
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This gives

δSrφs � Srφ� δφs � Srφs �
» t2
t1

dt

» `
0

dx
�BL
Bφ δφ�

BL
B 9φ Btδφ�

BL
BpBxφqBxδφ

�
.

Integrating by parts, we find

δSrφs �
» t2
t1

dt

» `
0

dx
�BL
Bφ � Bt BLB 9φ � Bx BL

BpBxφq
�
δφ

�
» `

0

dx
BL
BpBtφqδφ|

t�t2
t�t1 �

» t2
t1

dt
BL
BpBxφqδφ|

x�`
x�0 . (2.4)

The action principle requires that the action principle be stationary with respect to infinitezimal
variations of the fields that leave the field values at the initial and finite time unaffected, i.e.

δφpx, t1q � δφpx, t2q � 0 .

On the other hand, since the rod is clamped, the displacement at the end points must be zero, i.e.

δφp0, tq � δφp`, tq � 0 .

Under these circumstances we derive the Euler-Lagrange equations for our continuum system

B
Bt
� BL
BpBtφq

	
� B
Bx
� BL
BpBxφq

	
� BL

Bφ � 0 .

Let us now discuss the solution of the field equation

:φ� c2Bxxφ � 0 , c �
d
Y

µ
,

where c is the propagation velocity of vibrations through the rod. This equation is linear and, for
this reason, its solutions satisfy the superposition principle. Take an ansatz

φpx, tq � eikxakptq � e�ikxbkptq .

If we impose φp0, tq � 0, then bkptq � �akptq and we can refine the ansatz as

φpx, tq � akptq sin kx .

Requiring that φp`, tq � 0 we get sin k` � 0, i.e. k � kn � πn
` . Coefficients akptq then obey

:ak � c2k2akptq � 0 Ñ akptq � eiωktak ,

where ωk � �ck is the dispersion relation. Thus, the general solution is

φpx, tq �
¸
n

sin knx
�
An cosωnt�Bn sinωnt

	
, ωn � ckn ,

and the constants An, Bn are fixed by the initial conditions, which is an initial profile φpx, 0q and

an initial velocity 9φpx, 0q.

Scalar and vector fields
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The generalization to continuous systems in more space dimensions is now straightforward. In two-
dimensions one can start with two-dimensional lattice of springs. The displacement of a particle
at the site pi, jq is measured by the quantity ~φij , which is a two-dimensional vector. In the limit

when we go to a continuum, this becomes a displacement field ~φpx, y, tq of a membrane subjected to

small vibrations in the px, yq-plane. In three dimensions we get a vector ~φijk. The continuous limit

yields a three-dimensional displacement field ~φpx, y, z, tq of a continuous solid vibrating in the x, y, z
directions with eoms of a partial differential equation type:

:~φ� c1Bxx~φ� c2Byy~φ� c3Bzz~φ� c4Bxy~φ� c5Byz~φ� c6Bxz~φ � 0 ,

the coefficients ci encode the properties of the solid.

Tensors

In general, fields depending on the space-time variables are tensors, i.e. they transforms under
general coordinate transformations in a definite way. Namely, a tensor field φ

i1...ip
j1...jq

of rank pp, qq
under general coordinate transformations of the coordinates xi: xi Ñ x1ipxjq transforms as follows1

φ
1k1...kp
l1...lq

px1q � Bx1k1

Bxi1 � � � Bx
1kp

Bxip
Bxj1
Bx1l1 � � �

Bxjq
Bx1lq φ

i1...ip
j1...jq

pxq .

Here tensor indices are acted with the matrices Bx1i
Bxj which form a group GLpd,Rq. This is a group

of all invertible real d � d matrices. A simplest example is a scalar field that does not carry any
indices. Its transformation law under coordinate transformations is φ1px1q � φpxq. We stress that a
point with coordinates x in the original frame and a point with coordinates x1 in the transformed
frame is the one and the same geometric point.

2.2 Noether’s theorem

In order to fully describe a dynamical system, it is not enough to only know the equations of
motion. It is also important to be able to express the basic physical characteristics, in particular,
the dynamical invariants, via solutions of these equations. This goal is achieved by means of the
first Noether theorem, which we formulate and prove below.

Noether’s first theorem: To any finite-parametric, i.e. dependent on s constant parameters, contin-
uous transformation of the fields and the space-time coordinates which leaves the action invariant
corresponds s dynamical invariants, i.e. the conserved functions of the fields and their derivatives.

To prove the theorem, consider an infinitezimal transformation

xi Ñ x1i � xi � δxi , i � 1, . . . , d,

φIpxq Ñ φ1Ipx1q � φIpxq � δφIpxq .

As in the finite-dimensional case, the variations δxi and δφI are expressed via infinitezimal linearly
independent parameters δωn:

δxi �
¸

1¤n¤s
Xi
nδωn , δφIpxq �

¸
1¤n¤s

ΦI,nδωn . (2.5)

1There is a simple rule to remember the appearance of primed and unprimed indices in the tensor transformation
rule. Assuming that all indices on the left hand side of the tensor transformation formula are ‘primed’, then they
must label ‘primed’ coordinates in the right hand side of the formula.
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Here all δωn are independent of the coordinates x. Such transformations are called global. The
coefficients Xi

n and ΦI,n may depend on x and the fields, and they describe a response of coordinates
and fields on the infinitezimal transformation with a parameter δωn.

Obviously, particular cases of the transformations above arise, when Xk
n � 0 or ΦI,n � 0. In the

first case the coordinates xi do not change under symmetry transformations at all, while the fields
are transformed according to

φIpxq Ñ φ1Ipxq � φIpxq � δφIpxq .

In the second case the symmetry acts on the space-time coordinates only and the condition ΦI,n � 0
implies that φ1Ipx1q � φIpxq, i.e. the fields under considerations are scalars. We point out that in
the case when φI is not a scalar but rather a tensor, ΦI,n is not zero even if the symmetry acts
on the space-time coordinates only! To illustrate this point, consider a vector field φipxq. Under
coordinate transformation xi Ñ x1i � xi � δxi one gets

φ1ipx1q � Bx1i
Bxj φ

jpxq � Bpxi � δxiq
Bxj φjpxq � φipxq � Bδxi

Bxj φ
jpxqlooooomooooon

δφi

,

which implies that the corresponding quantity ΦI is non-trivial; the trivial case occurs only when
δxi does not depend on coordinates, i.e. it is a constant.

In the general case symmetry transformations act on both the space-time coordinates and the
fields, cf. eq.(2.5). Consider

φ1Ipx1q � φ1Ipx� δxq � φ1Ipxq � Bkφ1Ipxqδxk � . . . � φ1Ipxq � BkφIpxqXk
nδωn � . . .

It is important to realize that the operations δ and B{Bx do not commute. This is because δ is the
variation of the fields due to both the change of their form and their arguments xi. We therefore
introduce the notion of the variation of the form of the field function

δ̄φIpxq � φ1Ipxq � φIpxq � pΦI,n � BkφI Xk
nqδωn .

Variation of the form does commute with the derivative B{Bx. For the variation of the Lagrangian
density we, therefore, have

L 1px1q � L 1pxq � dL

dxk
δxk � L pxq �L 1pxq �L pxqloooooooomoooooooon

δ̄L pxq

�dL
dxk

δxk .

The change of the action is2

δS �
»

dx1 L 1px1q �
»

dxL pxq �
»

dx1 rL pxq � δ̄L pxq � dL

dxk
δxks �

»
dxL pxq .

Transformation of the integration measure is

dx1 � J � dx � det

�
���

Bx11
Bx1 � � � Bx1d

Bx1

...
...

Bx11
Bxd � � � Bx1d

Bxd

�
��

looooooooooooooomooooooooooooooon
Jacobian

dx � det

�
���

1� Bδx1

Bx1 � � � Bδxd
Bx1

...
...

Bδx1

Bxd � � � 1� Bδxd
Bxd

�
��dx .

2We consider a field theory in d-dimensions, so that the integration measure dx must be understood as dx �
dx1dx2 . . . dxd � ddx.
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Thus, at leading order in δωn we have

dx1 � dxp1� Bkδxk � . . .q.
Plugging this into the variation of the action, we find

δS �
»

dx
�
δ̄L pxq � dL

dxk
δxk � Bkδxk L

�
�
»

dx
�
δ̄L pxq � d

dxk
pL δxkq

�
.

We further note that

δ̄L pxq � BL
BφI δ̄φI �

BL
BpBkφIqBk δ̄φI � Bk

� BL
BpBkφIq

	
δ̄φI � BL

BpBkφIqBk δ̄φI �

� Bk
� BL
BpBkφIq δ̄φI

	
,

where we have used the Euler-Lagrange equations. Thus, we arrive at the following formula for the
variation of the action

δS �
»

dx
d

dxk

� BL
BpBkφIq δ̄φI �L δxk

�
�
»

dx
d

dxk

� BL
BpBkφIq pΦI,n � BmφI X

m
n q �LXk

n

�
δωn .

Since the integration volume is arbitrary we conclude that

dJkn
dxk

� 0 ðñ divJn � 0 ,

where

Jkn � � BL
BpBkφIq pΦI,n � BmφI X

m
n q �LXk

n

and n � 1, . . . s. Thus, we have shown that the invariance of the action under the s-parametric
symmetry transformations implies the existence of s conserved currents.

An important remark is in order. The quantities Jkn are not uniquely defined. One can add

Jkn Ñ Jkn � Bmχkmn ,

where χkmn � �χmkn . Adding such anti-symmetric functions does not influence the conservation law
BkJkn � 0.

Now we are ready to investigate concrete examples of symmetry transformations and derive the
corresponding conserved currents.

• Energy-momentum tensor. Consider the infinitezimal space-time translations

x1k � xk � δxk � xk � δknδωn ùñ Xk
n � δkn

and ΦI,n � 0. Thus, the conserved current Jkn becomes in this case a second rank tensor T kn

T kn �
BL

BpBkφIqBnφI � δknL .

Here, as usual, the sum over the index I is assumed. The quantity T kn is the so-called stress-
energy or energy-momentum tensor. If all the fields vanish at spacial infinity then the integral3

Pn �
»

dn�1xT 0
n

3Here we explicitly distinguished a time direction t and write the integration measure in the action as dx �
dtdn�1x.
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is a conserved quantity. Here 0 signifies the time direction and the integral is taken over the
whole pn� 1q-dimensional space. Indeed,

dPn
dt

�
»

dx
dT 0

n

dt
� �

»
dn�1x

dT in
dxi

� �
»

ΩÑ8
dΩ p~Tn � ~nq ,

where Ω is a pn�2q-dimensional sphere which surrounds a n�1-dimensional volume; its radius
tends to infinity. The vector ~n is a unit vector orthogonal to Ω.

• Angular momentum. Consider infinitezimal rotations x1n Ñ xn � xmδΩ
nm, where δΩnm �

�δΩmn. Because of anti-symmetry, we can choose δΩnm � δωnm with n   m as linearly
independent transformation parameters. We find

δxk � Xk
j δω

j �
¸
n m

Xk
nmδω

nm � xlδω
kl � xlδ

k
mδω

ml

�
¸
m l

xlδ
k
mδω

ml �
¸
m¡l

xlδ
k
mδω

ml �
¸
m l

pxlδkm � xmδ
k
l qδωml . (2.6)

From here we deduce that

Xk
nm � xmδ

k
n � xnδ

k
m, n   m.

If we consider a scalar field then φ1px1q � φpxq and δφ � 0. As a result, ΦI,n � 0. Using the
general formula

Jkn � � BL
BpBkφIq pΦI,n � BmφI X

m
n q �LXk

n ,

we therefore find the following angular momentum tensor

Mk
lm � BL

BpBkφq pBlφxm � Bmφxlq �L pxlδkm � xmδ
k
l q .

Notice that the last formula can be written in the form

Mk
lm � xm

� BL
BpBkφqBlφ �L δkl

	
� xl

� BL
BpBkφqBmφ �L δkm

	
� xmT

k
l � xlT

k
m ,

where T kl is the stress-energy tensor.

If we consider now a vector field φi, then according to the discussion above, we will have

δφi �
¸
m l

Φimlδw
ml � Bδxi

Bxj φ
jpxq � B

Bxj
� ¸
m l

pxlδim � xmδ
i
l qδωml

	

so that
Φiml � pgjlδim � gjmδ

i
l qφj � φlδ

i
m � φmδ

i
l ,

where gij is a space-time metric. According to our general formula, the set of corresponding
Noether currents will have the form

Jkmn � � BL
BpBkφiq pΦ

i
mn � BlφiX l

mnq �LXk
mn .

Substitution of all the quantities gives

Jkmn � � BL
BpBkφiq

�
φnδ

i
m � φmδ

i
n � Blφipxnδlm � xmδ

l
nq
�
�L pxnδkm � xmδ

k
nq .
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We, therefore, see that for the vector field, the angular-momentum tensor takes the form

Jkmn � xnT
k
m � xmT

k
n �

� BL
BpBkφnqφm � BL

BpBkφmqφn
	
.

The first piece here, which depends on the stress-energy tensor is called the orbital momentum
and the second piece characterizes polarization properties of the field and is related with a
notion of spin.

The final remark concern continuous s-parametric transformations which leave the action invari-
ant up to a total derivative term (in the original formulation of the Noether’s an exact invariance of
the action was assumed!)

δS � δωn

»
dx BkF kn .

These transformations also lead to conservation laws. It obtain them, it is enough to subtract from
the canonical current Jkn the term F kn :

J k
n � Jkn � F kn .

One can verify that this new current is conserved BkJ k
n as the consequence of the equations of

motion.
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Chapter 3

Klein-Gordon field

The career of a young theoretical physicist consists
of treating the harmonic oscillator in
ever-increasing levels of abstraction.

Sidney Coleman

3.1 Classical Klein-Gordon field

Classical fields are functions on space-time parametrized by coordinates xµ � pct, ~xq, where c is the
speed of light. In application to particle physics we will consider Lorentz invariant theories, the
simplest of them being a theory of a scalar field φp~x, tq. In these lectures we assume the Minkowski
metric to have the signature p1,�1, . . . ,�1q. The action describing a free massive scalar field in
four-dimensional space-time has the form

Srφs � 1
c

»
d4x

�
1
2BµφpxqBµφpxq � 1

2

�
mc
~
�2
φ2pxq

�
, (3.1)

where ~ is the Planck constant and d4x � cdtd~x is the Lorentz invariant integration measure. The
Euler-Lagrange equation which follows from this action is called the Klein-Gordon equation1

�
BµBµ �

�
mc
~
�2	

φpxq � 0 . (3.2)

This is the equation of motion for the scalar field.

We can rewrite the action as

Srφs �
»

dtd~x
�

1
2c2

9φpxq2 � 1
2 p~∇φpxqq2 � 1

2

�
mc
~
�2
φ2pxq

�
�
»

dt L , (3.3)

where L is identified with the corresponding Lagrangian and 9φ � Btφ.

1Very often in quantum field theory one adopts the natural units ~ � 1 � c. In the international system of units
SI the Klein-Gordon operator reads as

1

c2
B2

Bt2 � B2

Bx2
i

� m2c2

~2
.

We point out that λ � ~
mc

is the (reduced) Compton wave length associated to the scalar field.
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The passage to the Hamiltonian formalism is performed by introducing the canonical momentum
πpxq conjugate to the “coordinate” φpxq:

πpxq � δL

δ 9φpxq �
9φpxq
c2

.

The Hamiltonian has the form

H �
»

d~x π 9φ� L ,

where in the right hand side of the last formula one has to substitute the expression for 9φpxq via
πpxq. Making this substitution, one obtaines the Hamiltonian of the Klein-Gordon field

H � 1

2

»
d~x
�
c2π2 � Biφ Biφ�

�
mc
~
�2
φ2
�
. (3.4)

Denote by rφs the physical dimension of the field φ. Since H has the dimension of energy rHs � E ,
we have E � `3 � 1

`2 � rφs2, where E and ` signify units of energy and length, respectively. This
shows that the physical dimensions2 of a relativistic scalar field and of its momentum are

rφs �
c

E

`
, rπs � 1

c`

c
E

`
�
c
m

`3
.

Looking at the formula for the action, it is not difficult to deduce the physical dimension of the
latter; it is

rSs � 1

c
� `4 � 1

`2
� rφs2 � `

c
� E � E � t � r~s .

Thus, the physical dimension of the action coincides with that of the Planck constant ~. Concerning
the dimension of ~, it is

r~s � energy � time � momentum� coordinate � angular momentum .

The definition of the Poisson brackets is also generalized to the field-theoretic case. For any two
local in time functionals F rπ, φs and Grπ, φs of fields and their momenta we define their Poisson
bracket as the following functional

tF,Gu �
»

d~x

�
δF

δπpxq
δG

δφpxq �
δG

δπpxq
δF

δφpxq
�
,

where F and G are taken at the same moment of time. Let us show that just as in classical mechanics
with a finite number of degrees of freedom the physical dimension of the Poisson bracket, which we
denote by rtF,Gus, is offset from the product of physical dimensions rF srGs by one power of ~. To
this end, we need to find the dimensions of the variational derivatives entering the formula for the
Poisson bracket. Using the definition of the variational derivative, we find

δF �
»

d~x
δF

δφpxqδφpxq ÝÑ rF s � `3 �
� δF

δφpxq
�
�
c

E

`
ÝÑ

� δF

δφpxq
�
� rF s
`5{2 � E 1{2 ,

δF �
»

d~x
δF

δπpxqδπpxq ÝÑ rF s � `3 �
� δF

δπpxq
�
�
c

E

c2`3
ÝÑ

� δF

δπpxq
�
� rF s � c

`3{2 � E 1{2 .

2Physical dimension is often called ‘the engineering dimension’, see e.g. “Quantum Fields and Strings: A Course
for Mathematicians” AMS IAS 2000, by Perre Deligne et al., vol 1, page 446 (remark 1).
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Then from the definition of the Poisson bracket we can read off its physical dimension

�tF,Gu� � `3 � rF s � rGs � c

`4 � E
� rF s � rGs � c

`� E
� rF s � rGs

r~s . (3.5)

The canonical Poisson brackets implied by the Lagrangian (3.3) are

tφpt, ~xq, φpt, ~yqu � 0 ,

tπpt, ~xq, πpt, ~yqu � 0 , (3.6)

tπpt, ~xq, φpt, ~yqu � δp~x� ~yq .
Note that all the fields for which the brackets are computed are taken at the one and the same
moment of time. Then the Hamiltonian equations can be cast in the following form

9φ � tH,φu , 9π � tH,πu .

The first equation here gives 9φ � c2π, while the second one results in 9π � B2
i φ�

�
mc
~

	2

φ. Differen-

tiating the first equation over time, we then get

:φ � c2 9π � c2
�
B2
i φ�

�mc
~

	2

φ
�
, (3.7)

which is equivalent to (3.2).

It appears that the most efficient way to look at the dynamical variables is to invoke a momentum
representation, which simply means a passage to the corresponding Fourier image

φpxq � 1

p2πq3{2
»

d4k eikxφ̃pkq . (3.8)

Here the integration measure is d4k � dk0dk1 . . . dk3 and the Lorentz invariant scalar product kx is
defined as

kx � kµx
µ � k0x0 � ~k ~x � ωt� ~k ~x ,

where ~k is the wave vector, ω is the frequency and

x0 � ct , k0 � ω

c
.

In what follows we call the Fourier transform (3.8) the wave type, as the basis functions over which

the expansion is made of are the standard plane-waves eikx � eipωt�~k~xq.

Quite often one uses another, the energetic-type representation. It is based on the de Broglie
formulae

E � ~ω , ~p � ~~k ,

where E and ~p are the energy and momentum of the wave, respectively. Making the corresponding
change of variables, we get the energetic-type Fourier transform

φpxq �
»

dEd~p
p2πq3{2c~4 e

i
~ pEt�~p~xqφ̃ppq . (3.9)

The Klein-Gordon equation for the Fourier image takes the form��
E
c

�2 � ~p 2 �m2c2
�
φ̃ppq � 0 . (3.10)
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Since pµ � �Ec , ~p� is the four-momentum, the last equation written in the relativistic invariant form

reads
�
pµp

µ �m2c2
�
φ̃ppq � 0 and it is solved by

φ̃ppq � δ
�
p2 �m2c2

�
ϕppq .

The multiplier δpp2 �m2c2q establishes a relation between energy variable E and momentum ~p and
the square of mass m2

p2 �m2c2 � �Ec �2 � ~p 2 �m2c2 � 0 . (3.11)

This relation is known as the mass-shell condition. Therefore,

φpxq �
»

dEd~p
p2πq3{2c~4 δ

�
p2 �m2c2

�
e
i
~ pEt�~p~xqϕppq .

Because of the δ-function the integration goes over two three-dimensional hyperboloids

E � �c
a
~p2 �m2c2 .

Using the property of the δ-function

δ
�
p2 �m2c2

� � c δpE�c
?
~p2�m2c2q

2
?
~p2�m2c2

� c δpE�c
?
~p2�m2c2q

2
?
~p2�m2c2

,

the solution naturally splits into two integrals

φpxq � c
p2πq3{2~4

�»
d~p
2E e

i
~ pEt�~p~xq ϕpE, ~pq �

»
d~p
2E e

� i
~ pEt�~p~xq ϕp�E, ~pq

�
,

where now E � c
a
~p2 �m2c2 is assumed to be always positive! The second integrand is not written

in the relativistic-invariant from, so we change ~pÑ �~p obtaining thereby

φpxq � c
p2πq3{2~4

�»
d~p
2E e

i
~ pEt�~p~xq ϕpE, ~pq �

»
d~p
2E e

� i
~ pEt�~p~xq ϕp�E,�~pq

�
,

The first term in the brackets called the positive frequency part of φpxq, while the second one the
negative frequency part, respectively. It is standard to introduce the following Fourier amplitudes

a�p~pq � ϕpE,~pq
~3
?

2E
, ap~pq � ϕp�E,�~pq

~3
?

2E
.

For a real scalar field ϕ�ppq � ϕp�pq, so that ap~pq and a�p~pq are in fact complex conjugate to each
other. The dimension of ϕppq is rϕppqs � ~2`3{2E 1{2, so that the dimension of ap~pq is rap~pqs �
~1{2p�3{2. With the introduction of these amplitudes, the corresponding Fourier expansions will
finally read

φpxq � c~1{2
»

d~p

p2π~q3{2
1?
2E

�
a�p~pq e i~ pEt�~p~xq � ap~pq e� i

~ pEt�~p~xq
�
, (3.12)

πpxq � i

2c~1{2

»
d~p

p2π~q3{2
?

2E
�
a�p~pq e i~ pEt�~p~xq � ap~pq e� i

~ pEt�~p~xq
�
. (3.13)
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Let us now express the Hamiltonian (3.4) in terms of the amplitudes ap~pq and a�p~pq. Substitution
of φpxq and πpxq would lead to a triple integral, but the x-integration is easily done yielding the
delta-function, which allows one to further perform one of the momentum integrals. We recall the
Fourier representation of the the Dirac delta-function

δp~pq �
»

d~x

p2π~q3 e
i
~ ~p~x . (3.14)

In view of the importance of this calculation we will perform it here in full detail. We start with

H � 1

2

»
d~x

�
c
2
π

2 � Biφ Biφ�
�
mc
~

	2
φ

2
	
.

We then get

H � 1

2~

»
d~x d~p d~p1

p2π~q3
�
� 1

4

?
4EE1

�
a
�p~pqa�p~p1qe i~ pE�E1qt� i

~ p~p�~p
1q~x � a

�p~pqap~p1qe i~ pE�E1qt� i
~ p~p�~p

1q~x

�ap~pqa�p~p1qe� i
~ pE�E

1qt� i
~ p~p�~p

1q~x � ap~pqap~p1qe� i
~ pE�E

1qt� i
~ p~p�~p

1q~x
	

� c2?
4EE1

�
� p~p~p1qa�p~pqa�p~p1qe i~ pE�E1qt� i

~ p~p�~p
1q~x � p~p~p1qa�p~pqap~p1qe i~ pE�E1qt� i

~ p~p�~p
1q~x

�p~p~p1qap~pqa�p~p1qe� i
~ pE�E

1qt� i
~ p~p�~p

1q~x � p~p~p1qap~pqap~p1qe� i
~ pE�E

1qt� i
~ p~p�~p

1q~x
	

� m2c4?
4EE1

�
a
�p~pqa�p~p1qe i~ pE�E1qt� i

~ p~p�~p
1q~x � a

�p~pqap~p1qe i~ pE�E1qt� i
~ p~p�~p

1q~x

�ap~pqa�p~p1qe� i
~ pE�E

1qt� i
~ p~p�~p

1q~x � ap~pqap~p1qe� i
~ pE�E

1qt� i
~ p~p�~p

1q~x
	
.

Integrating over x produces either δp~p� ~p1q or δpp� ~p1q. Thus, we can further integrate over ~p1 obtaining the following result

H � 1

2~

»
d~p
�
� 1

2E
�
a
�p~pqa�p�~pqe 2i

~ Et � 2a
�p~pqap~pq � ap~pqap�~pqe� 2i

~ Et
	

� ~p2c2

2E

�
a
�p~pqa�p�~pqe 2i

~ Et � 2a
�p~pqap~pq � ap~pqap�~pqe� 2i

~ Et
	

�m2c4

2E

�
a
�p~pqa�p�~pqe 2i

~ Et � 2a
�p~pqap~pq � ap~pqap�~pqe� 2i

~ Et
	�
.

Thus, combining similar terms we arrive at

H �
»

d~p

4~E

��
� E

2 � ~p
2
c
2 �m

2
c
4
	�
a
�p~pqa�p�~pqe 2i

~ Et � ap~pqap�~pqe� 2i
~ Et

	
�

2
�
E

2 � ~p
2
c
2 �m

2
c
4
	
a
�p~pqap~pq

�
.

The first line in the expression above vanishes due to the fact that Ep~pq2 � ~p2c2 �m2c4, the second line gives

H � 1

~

»
d~pEp~pq a�p~pqap~pq .

Thus, written in terms of the amplitudes ap~pq and a�p~pq the Hamiltonian is

H � 1

~

»
d~pEp~pq a�p~pqap~pq . (3.15)

Here Ep~pq �
a
~p2c2 �m2c4. In general, Ep~pq is called the dispersion relation – an expression which

renders how the energy of a single particle state depends on its momentum. The Hamiltonian is
real and manifestly positive. It might seem strange that the classical Hamiltonian contains the
inverse Planck constant in front, but the latter is there for dimensional reasons – we set up to write
the Hamiltonian as an integral over the three-momentum, and the Planck constant is needed to
compensate for the engineering dimensions of a and a�, which are ras � ra�s � ~1{2p�3{2. The
Hamiltonian has the dimension of energy and when being written in terms of the corresponding
frequency ωp~pq it takes a more familiar form

H �
»

d~pωp~pqa�p~pqap~pq . (3.16)
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For completeness we give here the expression for φpxq in terms of frequencies

φpxq � c

»
d~p

p2π~q3{2
1a

2ωppq
�
a�p~pq eipωt�~k~xq � ap~pq e�ipωt�~k~xq

�
. (3.17)

Further, we note that it naturally splits into a sum of two parts φ � φ� � φ�. Here φ�, being
a positive-frequency solution, depends on the amplitude a�p~pq. Analogously, a negative-frequency
solution φ� involves ap~pq:

φ�pxq � c

»
d~p

p2π~q3{2
eipωt�~k~xqa

2ωppq a
�p~pq , φ�pxq � c

»
d~p

p2π~q3{2
e�ipωt�~k~xqa

2ωppq ap~pq .

As we will see in the next section, in quantum theory a�p~pq will become an operator which creates
a particle with momentum ~p, while ap~pq destroys it. This makes our identification of positive
frequency field with ‘creation’ and negative frequency field with ‘annihilation’ rather intuitive. We
point, however, that in the literature the terminology ‘positive and negative frequency’ is often
assigned in an opposite way: positive Ø annihilates and negative Ø creates. Such a terminology
originates from intrpreting the exponential factor e	iωt � e	

i
~Et from the point of view of the one-

particle Schrödinger equation. Indeed, e�iωt has a positive frequency (energy), while e�iωt has a
negative frequency (energy), because

i~
B
Bte

	iωt � �~ωe	iωt � �Ee	iωt .

We will not pursue this interpretation here.3

So far we are in the framework of the classical theory and it is now the time to ask what is the
physical meaning of the amplitudes a�p~pq and ap~pq. Looking for the expression for φpxq, we see that
it is natural to define the time-dependent amplitudes as

a�p~p, tq � eiωp~pqta�p~pq , ap~p, tq � e�iωp~pqtap~pq

These formulae represent the solutions of the Hamiltonian equations of motion

daptq
dt

� tH, aptqu , da�ptq
dt

� tH, a�ptqu ,

where the Poisson brackets are

tap~pq, a�p~p1qu � i δp~p� ~p1q ,
ta�p~pq, a�p~p1qu � 0 , (3.18)

tap~pq, ap~p1qu � 0 .

It is easy to check that these Poisson brackets imply the Poisson brackets (3.6) for φp~xq and πp~xq.
Thus, we are led to conclude that the free massive scalar field is nothing but an infinite set of
harmonic oscillators. Indeed, the Hamiltonian (3.16) is essentially a sum of frequencies of an infinite
number of harmonic oscillators, each labeled by the three-dimensional momentum vector ~p. Often
representation (3.12) and (3.13) of canonical fields in terms of the complex amplitudes a and a� is
called holomorphic.

Since the action for the Klein-Gordon field is invariant under Poincaré group, we can use the
Noether theorem to construct the corresponding Noether currents and the conserved charges, among

3Our definition of positive and negative frequency solutions agrees with that of Bogoluibov & Shirkov but opposite
to Peskin & Schroeder.

20



them, in addition to the Hamiltonian, the momentum Pi and rotations Jij and Lorentz boosts J0i.
Explicitly, the time components of the stress-tensor are

T 0
0 � H , T 0

i � c πBiφ � cPi ,

where H and Pi are the Hamiltonian and momentum density, respectively. The time component
of the generator of Lorentz transformations is

J0
µν � xµT

0
ν � xνT

0
µ .

Thus, we find

• Shifts

P i � �Pi � �
»

d~x πBiφ � 1

~

»
d~p a�p~pq piap~pq ;

• Rotations

J ij � Jij �
»

d~x πpxiBjφ� xjBiφq � i

»
d~p a�p~pqppjBi � piBjqap~pq ;

• Lorentz boosts

J0i � �J i0 �
»

d~x
�1

c
xiH � x0Pi

	
� 1

c

»
d~x xiH � ctP i �

� i

2c

»
d~pEp~pq

�
a�p~pqBiap~pq � Bia�p~pqap~pq

	
� ctP i .

Normalization of generators is chosen in such a way that their engineering dimensions are of momen-
tum for P i and of angular momentum (of the action) for Jµν . Note that Lorentz boosts J0i have an
explicit time dependence. This is a manifestation of the fact that in the Hamiltonian formulation
the boost symmetries are ‘broken’, while the Hamiltonian is one of the generators of the Poincaré
algebra. The time derivative J0i is

dJ0i

dt
� tH,J0iu � BJ0i

Bt � tH,J0iu � c P i

and it vanishes due to the Poincaré algebra relation tH,J0iu � c P i, as the reader can verify by
direct calculation.

3.2 Canonical quantization and Fock space

Upon quantization the classical fields φpxq and πpxq become hermitian operator-valued functions4

on space-time and they constitute observables in quantum field theory. It is important to realize
that φpxq and φpx1q, which is the same operator φ but evaluated at two different space-time points,
define two different observables. Canonical quantization consists in replacing the equal-time Poisson
brackets t , u with the quantum Poisson brackets t , u~. Explicitly,

tφpt, ~xq, φpt, ~yqu~ � i

~
rφpt, ~xq, φpt, ~yqs � 0 ,

tπpt, ~xq, πpt, ~yqu~ � i

~
rπpt, ~xq, πpt, ~yqs � 0 , (3.19)

tπpt, ~xq, φpt, ~yqu~ � i

~
rπpt, ~xq, φpt, ~yqs � δp~x� ~yq ,

4More precisely, operator-valued distributions.
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which is equivalent to the following commutation relations

rφpt, ~xq, φpt, ~yqs � 0 ,

rπpt, ~xq, πpt, ~yqs � 0 , (3.20)

rφpt, ~xq, πpt, ~yqs � i~ δp~x� ~yq .
Upon quantization the classical amplitudes a�p~pq and ap~pq are replaced by operators a:p~pq and ap~pq,
which are creation and annihilation operators for the harmonic oscillator labeled by the momentum
~p. The commutation relations are

rap~pq, ap~p1qs � 0 , ra:p~pq, a:p~p1qs � 0 , rap~pq, a:p~p1qs � ~ δp~p� ~p1q . (3.21)

The commutation relations are obviously compatible with the engineering dimensions of the oscilla-
tors being ras � ra:s � ~1{2p�3{2.

Commutation relations (3.21) are the algebraic relations between the abstract operators ap~pq
and a:p~pq. Now we would like to realize these operators through their action on states in a suitable
Hilbert space. To this end, consider a state |0y which we identify with a vacuum state, that is the
state without particles. Acting on this state with a:p~pq will create a one-particle state

|~py �
a

2ωppq a:p~pq|0y
and so on

|0y , |~p1y, |~p1 ~p2y, . . . |~p1 ~p2 . . . ~pny, . . .

The additional normalization factor
a

2ωppq is chosen here for later convenience5. The space of all
these states is called the Fock space and the representation of the field operators in the Fock space
is usually called the representation of second quantization.6 For the discussion of the formalism of
second quantization in the non-relativistic quantum mechanics we refer the reader to appendix 3.5.1.

In this space creation operator a:p~pq simply adds up a new particle with momentum ~p

a:p~pq|~p1 ~p2 . . . ~pny � 1a
2ωppq |~p ~p1 ~p2 . . . ~pny .

The annihilation operator acts in this representation as

ap~pq|~p1 ~p2 . . . ~pny � ~
a

2ωppq
ņ

i�1

δp~p� ~piq|~p1 . . . ~̂pi . . . ~pny , appq|0y � 0 .

In other words, the annihilation operator checks an existence in a state a particle with momentum
~p and then removes it. It is easy to verify that the formulae above indeed provide a representation
of the commutation relations (3.21). Indeed,

ap~pqa:p~p1q|~p1 . . . ~pny � 1a
2ωpp1qappq|~p

1 ~p1 . . . ~pny �

� ~ δp~p� ~p1q|~p1 . . . ~pny � ~

d
ωppq
ωpp1q

ņ

i�1

δp~p� ~piq|~p1 ~p1 . . . ~̂pi . . . ~pny ,

a:p~p1qap~pq|~p1 . . . ~pny � ~
a

2ωppq
ņ

i�1

δp~p� ~piqa:p~p1q|~p1 . . . ~̂pi . . . ~pny �

� ~

d
ωppq
ωpp1q

ņ

i�1

δp~p� ~piq|~p1 ~p1 . . . ~̂pi . . . ~pny .

5Often in the literature (see e.g. Sterman 1993) the operators a, a: are rescaled as a �
a

2ωppq ap~pq, a: �a
2ωppq a:p~pq so that a and a: are conjugate to each other and ras � ra:s � E 1{2p�3{2. In this case |~py � a:|0y,

while the commutator changes to rap~pq,a:p~p1qs � 2~ωp~pqδp~p � ~p1q. This commutator is relativistic invariant, see the
discussion below.

6Schweber points out (see Schweber 1994, p. 28) that the idea and procedure of second quantization goes back to
Jordan, in a number of papers from 1927 (see references in Schweber 1994, pp. 695f), while the term itself was coined
by Dirac.
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Subtracting these two expressions leaves us with the desired result

rap~pq, a:p~p1qs|~p1 . . . ~pny � ~ δp~p� ~p1q|~p1 . . . ~pny .

An arbitrary state in the Fock space is given by a linear superposition

|χy �
8̧

n�0

1?
n!

» n¹
i�1

d~pia
2~ωp~piq

χnp~p1, . . . , ~pnq|~p1 . . . ~pny , (3.22)

where the coefficients χn are symmetric functions of their arguments. The scalar product in the
Fock space is defined as follows. We assume that x0|0y � 1. From this assumption and commutation
relations (3.21) one finds

x~q1 . . . ~qn|~p1 . . . ~pmy �
n¹
k�1

a
2ωp~pkq

m¹
l�1

a
2ωp~plq x0|apq1q . . . apqnqa:pp1q . . . a:ppmq|0y �

� δmn
¸
P

n¹
i�1

2~ωp~piq δp~pi � ~qPpiqq . (3.23)

Here sum is taken over all permutations P of the n indices 1, . . . , n. We recall that a permutation
is an operation which correlates a set of n ordered objects, e.g. the set ~q1, ~q2, . . . , ~qn, with the same
set of objects but taken in a different order. Usually such an operation, which maps ~q1 into ~qα1

, ~q2

into ~qα2
, etc., is denoted by

P �
�

1 2 . . . n
α1 α2 . . . αn



,

so that P~qi � ~qαi � ~qPpiq. With the formula (3.23) we find a scalar product between two arbitrary
states

xΨ|χy �
8̧

n�0

»
Ψ�
np~p1, . . . , ~pnqχnp~p1, . . . , ~pnq

n¹
i�1

d~pi . (3.24)

Our choice of normalization of the Fock states was deliberately chosen to render the scalar
product relativistic invariant. It is enough to demonstrate this for the case of one-particle sates. On
the subspace of one-particle states the scalar product (3.23) boils down to

x~p|~qy � 2~ωp~pqδp~p� ~qq � 2 cp0δp~p� ~qq . (3.25)

This scalar product is indeed relativistic invariant, i.e. it is invariant under Lorentz transformations

x1µ � Λµνx
ν , ηµνΛµαΛνβ � ηαβ ,

where ηµν is Minkowski metric.
To show this, we need to understand how to evaluate

δp~p1 � ~q
1q �

3¹
i�1

δpp1i � q
1iq �

3¹
i�1

δ
�
Λ
i
µppµ � q

µq
	
. (3.26)

Let ϕ be a function from the space of test functions and consider

»
ϕp~pq

3¹
i�1

δ
�
Λ
i
µppµ � q

µq
	
dp
i �

»
ϕp~pp~yqq

�����det
� Bpi
Byj

	�����
3¹
i�1

δpyiqdyi � ϕp~pp0qq
�����det

� Bpi
Byj

	�����
~y�0

,
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where we have performed the change of variables pi Ñ yi � Λiµppµ� qµq. We compute the arising Jacobian as follows. Since

y
i � Λ

i
jppj � q

jq � Λ
i
0pp0 � q

0q ,

we have

Λ
i
j

Bpj
Byk � Λ

i
0

Bp0

Byk � δ
i
k . (3.27)

Because of the mass-shell condition p0 �
a
m2c2 � ~p2,

Bp0

Byk � pj

p0

Bpj
Byk

� � pj
p0

Bpj
Byk

so that eq.(4.23) takes the form �
Λ
i
j � Λ

i
0

pj

p0

	 Bpj
Byk � δ

i
k ,

which is nothing else but the matrix form of the product of two matrices which equals to the unit matrix. Thus, computing
the determinant, we obtain

det
�
Λ
i
j � Λ

i
0

pj

p0

	
det

� Bpj
Byk

	
� 1 .

Note that ~y � 0 implies ~pp0q � ~q and thus

»
ϕp~pq

3¹
i�1

δ
�
Λ
i
µppµ � q

µq
	
dp
i � ϕp~qq���det

�
Λij � Λi0

qj

q0

	��� �
»

d~pϕp~pq δp~p� ~qq���det
�
Λij � Λi0

pj

p0

	��� .

Since ϕp~pq is arbitrary, we conclude from the last formula that under Lorentz transformations the the delta-function of
three-momentum transforms as

δp~p1 � ~q
1q � δp~p� ~qq���det

�
Λij � Λi0

pj

p0

	��� . (3.28)

Denote A � ||Λji || and introduce two three-vectors ~u and ~v with components Λi0 and � pi
p0

, respectively. Then det
�
Λij �

Λi0
pj

p0

	
� detpA� ub vtq. This determinant can be computed by using the matrix determinant lemma7

detpA� ub v
tq � p1 � v

t
A
�1
uq detA .

Therefore, we get

det
�
Λ
i
j � Λ

i
0

pj

p0

	
�
�
1 � pi

p0

pA�1qijΛj0
	

detA ,

where the matrix elements of A are identified with Λji . The relation ηµνΛαµΛβν � ηαβ implies

Λ
0
0Λ

j
0 � Λ

0
kΛ

j
k � 0 ,

which gives in its turn

pA�1qijΛj0 �
1

Λ0
0

Λ
0
kpA�1qijΛjk �

Λ0
i

Λ0
0

.

Thus,

det
�
Λ
i
j � Λ

i
0

pj

p0

	
�
�
1 � pi

p0

Λ0
i

Λ0
0

	
detA �

�
Λ

0
0 p

0 � Λ
0
ip
i
	detpAq
p0Λ0

0

� p01

p0

detA

Λ0
0

,

where p01 is the Lorentz transformed p0 component p01 � Λ0
0 p

0 � Λ0
ip
i. Further, from η00Λi0Λj0 � ηkkΛikΛjk � ηij we infer

pAAtqji � δji � Λi0Λj0 and using the matrix determinant lemma once again, we obtain pdetAq2 � 1 � Λi0Λi0. Finally, from

η00Λ0
0Λ0

0�ηiiΛi0Λi0 � η00, we get Λ0
0Λ0

0�Λi0Λi0 � 1 and, therefore, pdetAq2 � 1�Λi0Λi0 � pΛ0
0q2, which implies detA � �Λ0

0.
In this way we have shown that

p
01
δp~p1 � ~q

1q � p
0
δp~p� ~qq .

As a result xΛ~p|Λ~qy � x~p|~qy.

7In this relation, see also the Sherman-Morrison formula, which computes pA� ub vtq�1.
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Hamiltonian and symmetries

In the quantum theory of the free Klein-Gordon field we define the Hamiltonian as the following
operator

H �
»

d~pωp~pqa:p~pqap~pq .

Here we deliberately put the creation operator on the left from the annihilation one. Such ordering
of creation and annihilation operators, called the normal ordering, makes the energy of any Fock
state well-defined. Application of H to an arbitrary state containing n particles with momenta
~p1, . . . , ~pn, shows that this state is an eigenstate of H with the eigenvalue being simply the sum of
individual energies of the corresponding particles

H|~p1 . . . ~pny �
ņ

i�1

~ωp~piq|~p1 . . . ~pny .

In general, for a set of fields φ1px1q, φ2px2q, . . . , φkpxkq the normal-ordered product

: φ1px1qφ2px2q . . . φkpxkq :

is defined as the usual product but with all creation operators being on the left from all annihilation
operators.

Let us again return to the energetic-type expansion of φpxq

φpxq � c

»
d~p

p2π~q3{2
1a

2ωp~pq
�
a�p~pq e i~ pEt�~p~xq � ap~pq e� i

~ pEt�~p~xq
�
.

The field operators which are positive and negative frequency parts of φpxq read

φ�p~x, 0q � c

»
d~p

p2π~q3{2
1a

2ωp~pqa
:p~pq e� i

~ ~p~x , (3.29)

φ�p~x, 0q � c

»
d~p

p2π~q3{2
1a

2ωp~pqap~pq e
i
~ ~p~x .

We have

φ�p~x, 0q|0y � c

p2π~q3{2
»

d~q

2ωp~qq e
� i

~~q~x|~qy .

If we take the inner product of this state with the momentum eigenstate |~py, we get

x~p |φ
�p~x, 0q
~c

|0y � 1

p2π~q3{2
»

d~q

2~ωp~qq e
� i

~~q~x x~p|~qyloomoon
2~ωppqδp~p�~qq

� e�
i
~ ~p~x

p2π~q3{2 � x~p|~xy ,

where in the last relation we recall the scalar product between momentum and position eigenstates.8

Thus, we see that we can interpret φ�p~x, 0q as an operator which creates out of the vacuum a particle
at position ~x.

3.3 Commutation and Green’s functions

In the theory of interacting fields solutions of inhomogeneous field equations with point-like sources
play a prenominal role. They are known as Green’s functions and they include, in particular, the

8Normalization of the wave function of a free particle is
³

d3x �x~q|~xyx~p|~xy � δp~p� ~qq, which is standard in quantum
mechanics.
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retarded and advanced Green functions, and also the so-called causal Green’s function, the latter
is also known as the Feynmann propagator. Below we discuss these functions in the context of the
Klein-Gordon field. We start, however, from solutions of the Klein-Gordon equation without sources,
which are related to commutators of quantum fields at different space-time points and, therefore,
are known as commutation functions.

Pauli-Jordan function

Given the commutation relations between creation and annihilation operators, we are now in a
position to compute the commutator of quantum fields at different space and time points. We
define9

rφp~x, tq, φp~x1, t1qs � i~cDpx� x1q .
Obviously, Dpxq is a function rather than an operator; it is known as the Pauli-Jordan function. By
construction, the Paui-Jordan a solution of the Klein-Gordon equation with respect to either x or
x1. It has the following explicit expression

Dpxq � � εptq
2π

�
�δ�x2

�� 1

2

�mc
~

	2

θ
�
x2
�J1

�
mc
~

?
x2
	

mc
~

?
x2

�
� . (3.30)

Here px � x1q2 � c2pt � t1q2 � p~x � ~x1q2 is the Lorentz-invariant four-interval, θpxq is the Heaviside
theta function and J1pxq is the Bessel function of the first kind. Also εptq denotes the sign function

εptq �
$&
%

�1 t ¡ 0
0 t � 0

�1 t   0

Thus, for t � t1 the equal-time commutator rφp~x, tq, φp~x1, tqs vanishes.

Importantly, from the explicit form of the Pauli-Jordan function10, we see that the commutator
of two local fields vanishes if their space-time points are separated by the space-like interval. Local
quantum operators taken at points that are not causally connected do commute. This is one of the
important implementations of causality in quantum field theory.

Expanding the Pauli-Jordan function around the light-cone, we find

Dpxq � �εptq
2π

�
δpx2q � 1

2

�mc
~

	2

θpx2q � . . .
�
, (3.31)

where terms which vanish when x2 Ñ 0 have been omitted. Thus, the Pauli-Jordan function has a
delta-function singularity as well as a finite-discontinuity (jump) on the light-cone.

Below we give a detailed derivation of the Pauli-Jordan function.

rφp~x, tq, φp~x1, t1qs � ~c2

p2π~q3
»

d~pd~p1?
4EE1

�
ra:p~pq, ap~p1qse i~ pEt�E1t1q� i

~ p~p~x�i~p
1~x1q � rap~pq, a:p~p1qse� i

~ pEt�E
1t1q� i

~ p~p~x�i~p
1~x1q

�

� � ~2c2

p2π~q3
»

d~p

2E

�
e
i
~Ept�t

1q� i
~ ~pp~x�~x

1q � e
� i

~Ept�t
1q� i

~ ~pp~x�~x
1q
�

(3.32)

� i~c
�2~c
p2π~q3

»
d~p

2E
e
i
~ ~pp~x�~x

1q
sin

Ept� t1q
~

.

The Pauli-Jordan function is then

Dpx� x
1q � � 2~c

p2π~q3
»

d~p

2E
e
i
~ ~pp~x�~x

1q
sin

Ept� t1q
~

. (3.33)

9We use the notation D for solutions of the homogenious Klein-Gordon equation and 4 for Green’s functions.
10It is of the opposite sign to the notation of Bogolubov and Shirkov but agrees with Schweber.
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Now we perform integration passing to the spherical coordinates

Dpxq � � 2~c
p2π~q3

»
8

0

p2dp

2E
sin

Et

~

» 2π

0

dφ

» π
0

sin θdθ e
i
~ px cos θ

.

Here r �
?
~x2, p �

a
~p2. Integrating over angles gives

Dpxq � � 2~c
p2π~q2r

»
8

0

p dp

Eppq sin
pr

~
sin

Eppqt
~

,

which can be represented in the form

Dpxq � 1

4π2

1

r

B
Br

»
8

�8

de?
e2 �m2c4

cos
er

c~
sin

?
e2 �m2c4t

~
,

where we changed the variable e � cp and used the fact that the integrand is an even function of p. This motivates to
introduce the function

F pr, tq � 1

π

»
8

�8

de?
e2 �m2c4

cos
er

c~
sin

?
e2 �m2c4t

~
.

Now to evaluate this integral we make a change of variables e � mc2 sinhϕ, where �8 ¤ ϕ   8. Then
?
e2 �m2c4 �

mc2 coshϕ ¡ 0, so that

F pr, tq � 1

π

»
8

�8

dϕ cos
�mcr

~
sinhϕ

	
sin

�mc2t
~

coshϕ
	
�

� 1

2π

»
8

�8

dϕ
�

sin
�mcr

~
sinhϕ� mc2t

~
coshϕ

	
� sin

�mcr
~

sinhϕ� mc2t

~
coshϕ

	�
.

Then we need to consider three different cases depending on the inequalities between ct and r. For definiteness, we choose
ct ¡ r ¡ 0 and then make the change of variables

cta
pctq2 � r2

� coshϕ0 ,
ra

pctq2 � r2
� sinhϕ0 ,

so that

F pr, tq � 1

2π

»
8

�8

dϕ
�

sin
�mc

~

b
pctq2 � r2 coshpϕ� ϕ0q

	
� sin

�mc
~

b
pctq2 � r2 coshpϕ� ϕ0q

	�
�

� 1

π

»
8

�8

dϕ sin
�mc

~

b
pctq2 � r2 coshpϕq

	
� J0

�mc
~

b
pctq2 � r2

	
,

where J0pxq is the Bessel function. Doing the other cases one finds the complete result

F pr, tq �

$''&
''%

�J0

�
mc
~
a
pctq2 � r2

	
for ct ¡ r

0 for � r   ct   r

�J0

�
mc
~
a
pctq2 � r2

	
for ct   �r

This result can be written as a single formula

F pr, tq � εptqθ
�
pctq2 � r

2
	
J0

�mc
~

b
pctq2 � r2

	
.

Thus,

Dpxq � εptq
4πr

B
Br

�
θ
�
pctq2 � r

2
	
J0

�mc
~

b
pctq2 � r2

	�
,

which leads to the formula (3.30).

Retarded Green’s function

Above we have introduced the important Pauli-Jordan function which equals to the commutator of
two field operators at two arbitrary space-time points. Now define the following function11

4ret px� x1q � θpt� t1qrφp~x, tq, φp~x1, t1qs � i~c θpt� t1qDpx� x1q . (3.34)

11The function Dpxq is real, while 4retpxq is purely imaginary.
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One comment is in order. We hope that the reader already acquinted enough experience with
accounting in the formulae the fundamental constants c and ~. To proceed, it is advantageous to
adopt the natural system of units c � 1 � ~. Since r~s � p �`, and rps � m �c, in this system the main
remaining parameter is the mass m, while the length ` � 1{m. The actual constants c and ~ can
aways be restored on dimensional grounds. In any equation the physical (engineering) dimension
of the left hand side must be equal to that of the right hand side, otherwise an equation makes no
sence.

With the natural system of units at hand, we now demonstrate that 4retpxq is nothing else but
the retarded Green’s function for the Klein-Gordon equation. This can be done at least in two
different ways. The simplest one is to act on 4ret with the Klein-Gordon operator and use the fact
that φp~x, tq solves the Klein-Gordon equation. Indeed,12

�
B2
t � B2

i �m2
	�
θpt� t1qrφp~x, tq, φp~x1, t1qs

	
�

� Btpδpt� t1qrφp~x, tq, φp~x1, t1qslooooooooooooooomooooooooooooooon
�0

�θpt� t1qrπp~x, tq, φp~x1, t1qsq

�θpt� t1qrp�B2
i �m2qφp~x, tq, φp~x1, t1qs

� δpt� t1qrπp~x, tq, φp~x1, t1qs � θpt� t1qrpB2
t � B2

i �m2qφp~x, tqlooooooooooooomooooooooooooon
�0

, φp~x1, t1qs �

� �i δpt� t1qδp~x� ~x1q � �i δp4qpx� x1q .

Further, in accord with the definition, 4retpxq vanishes for t   t1, which is the characteristic property
of the retarded Green’s function.

The second way to show that 4retpxq is the Green’s function is to analyze an integral represen-
tation

4ret pxq � � θptq
p2πq3

»
d~k

2k0

�
eik

0t � e�ik
0t
�
e�i~k~x ,

which follows from the formula (3.32) upon taking into account that, in the natural units, ~p � ~k and

E � k0, where k0 �
a
~k2 �m2 . Further, we consider the following integral (k0 is an integration

variable)

» 8
�8

e�ik
0tdk0

pk0 � iεq2 � ~k2 �m2
�

�
» 8
�8

dk0

2
a
~k2 �m2

�
e�ik

0t

k0 �
a
~k2 �m2 � iε

� e�ik
0t

k0 �
a
~k2 �m2 � iε

�
.

To compute this integral, we note that for t ¡ 0 the integration contour can be closed in the lower
half k0-plane, in which case the contour encloses two poles at

k0 �
b
~k2 �m2 � iε and k0 � �

b
~k2 �m2 � iε .

Applying Cauchy’s theorem, we therefore find

» 8
�8

e�ik
0tdk0

pk0 � iεq2 � ~k2 �m2
� 2πi

2
a
~k2 �m2

�
ei
?
~k2�m2 t � e�i

?
~k2�m2 t

�
.

12With c and ~ restored the equation below will read BµBµpθpt� t1qrφp~x, tq, φp~x1, t1qsq � �i~c δp4qpx� x1q.
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Figure 3.1: The integration contour and position of poles of the integrand for the retarded Green
function. Poles lie in the lower k0-half-plane.

For t   0 the integration contour can be closed in the upper half-plane where there are no poles and,
therefore, the corresponding integral is zero. Thus, we ontain the following integral representation

4ret pxq �
»

d4k

p2πq4
i

pk0 � iεq2 � ~k2 �m2
e�ikx .

Now we act on this expression with the Klein-Gordon operator

�
BµBµ �m2

	
4ret pxq � � lim

εÑ0
i

»
d4k

p2πq4
pk0q2 � ~k2 �m2

pk0 � iεq2 � ~k2 �m2
e�ikx � �i δp4qpxq .

Thus, we conclude again that 4retpxq is the Green’s function for the Klein-Gordon equation and
it is non-zero only in the forward light-cone, i.e. by definition it is the retarded Green’s function.
Analogously, one can introduce the advanced Green’s function and study its properties.

Feynman propagator

In quantum field theory a special role is played by the causal Green’s function 4px � x1q, which
we also called the Feynman propagator. This function describes a causal relationship between the
processes of creation and annihilation of particles in different space-time points x and x1.

The following interpretation of the field amplitudes is natural. The process of creating first a
particle at a point x1 with its subsequent annihilation at x is described by the amplitude

x0|φpxqφpx1q|0y � x0|φ�pxqφ�px1q|0y � x0|rφ�pxqφ�px1qs|0y � i~cD�px� x1q , (3.35)

where it is then natural to consider t ¡ t1. Analogously, the same amplitude can be looked as
corresponding to first destroying a particle at x and creating a new one at x1, in which case it is
natural to have t   t1. Here D�px � x1q is a negative frequency part of the Pauli-Jordan function.
In general, the positive and negative frequency parts of the Pauli-Jordan function are defined as

rφ�p~x, tq, φ	p~x1, t1qs � i~cD�px� x1q .

Then the Feynman propagator is defined as follows

4 px� x1q � θpt� t1qx0|φpxqφpx1q|0y � θpt1 � tqx0|φpx1qφpxq|0y �
� θpt� t1q i~cD�px� x1q � θpt1 � tq i~cD�px1 � xq . (3.36)

In fact, 4px� x1q can be concisely written by using the notion of the time-ordered product

4 px� x1q � x0 | T pφpxqφpx1qq | 0y . (3.37)
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Figure 3.2: The integration contour and position of poles of the integrand for the Feynman propa-
gator. The left figure is for t ¡ 0 and the right one for t   0.

Time ordering means putting operators in the order of increasing time argument from the right to
the left. Colloquially speaking, the younger operator is righter it stands.13

For the auxiliary function D�pxq it is straightforward to obtain (in the natural units)

D�pxq � � i

p2πq3
»

d~k

2k0
e�ik

0t�i~k~x .

Taking into account this integral representation for D�pxq, we arrive at

4 pxq � 1

p2πq3
»

d~k ei
~k~x
�θptq

2k0
e�ik

0t � θp�tq
2k0

eik
0t
�
, k0 �

b
~k2 �m2 .

Consider now the following integral (here k0 is an integration variable!)

»
dk0e�ik

0t

k2 �m2 � iε
�
»

dk0e�ik
0t

pk0q2 � p~k2 �m2q � iε
(3.38)

As the function of k0 the integrand has poles in the complex plane at

k0 � �
b
~k2 �m2 � iε � �

b
~k2 �m2 	 iε .

Expanding the integrant into simple fractions, we get»
dk0e�ik

0t

k2 �m2 � iε
�
»

dk0

2
a
~k2 �m2

� e�ik
0t

k0 �?k2 �m2 � iεloooooooooooomoooooooooooon
t¡0

� e�ik
0t

k0 �?k2 �m2 � iεloooooooooooomoooooooooooon
t 0

�
�

� 2πi
1

2
a
~k2 �m2

�
� θptqe�i

?
~k2�m2t � θp�tqei

?
~k2�m2t

�
,

where in the last step Cauchy’s residue theorem was applied.14 Thus, we find for 4 the following
quite compact integral representation in the form of the four-fold integral

4 pxq �
»

d4k

p2πq4
i

k2 �m2 � iε
e�ikx . (3.39)

Obviously, 4pxq is also a Green’s function for the Klein-Gordon equation.

It is interesting to know how 4pxq behaves as a function of x. Below we provide an answer to
this question.

13This rule is easy to remember by envoking a slogan “The youth is always right!”.
14Pay attention to the orientation of the integration path!
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First, we note that 4pxq is symmetric under the change t Ñ �t, so we can assume without loss of generality that t ¡ 0. In
this case the expression for 4 boils down to

4 pxq � 1

p2πq3
»

d~k

2

b
~k2 �m2

e
i~k~x

e
�i
?
~k2�m2t

, t ¡ 0 .

Switching to the spherical coordinates and integrating over angles, precisely in the same way as it was done for the Pauli-
Jordan function, we obtain

4 pxq � 1

p2πq2r
»
8

0

kdk sinpkrq?
k2 �m2

e
�i
?
k2�m2t � � 1

8π2r

B
Br

»
8

�8

dk cospkrq?
k2 �m2

e
�i
?
k2�m2t

.

As above, here the notations k �
a
~k2 and r �

?
~x2 are used. The last formula can be rewritten as

4 pxq � � 1

16π2r

B
Br

»
8

�8

dk?
k2 �m2

�
e
ipkr�

?
k2�m2tq � e

�ipkr�
?
k2�m2tq

	

Finally, introducing k � m sinhϕ, we arrive at

4 pxq � � 1

16π2r

B
Br

»
8

�8

dϕ
�
e
impr sinhϕ�t coshϕq � e

�impr sinhϕ�t coshϕq
	
.

Now we have to distinguish two cases.

1) r ¡ t, that is the space-time interval is space-like x2   0. In this case we introduce the variable ϕ0 as

r?
r2 � t2

� coshϕ0 ,
t?

r2 � t2
� sinhϕ0 .

4 pxq � � 1

16π2r

B
Br

»
8

�8

dϕ
�
e
im
?
r2�t2 sinhpϕ�ϕ0q � e

�im
?
r2�t2 sinhpϕ�ϕ0q

	
�

� � 1

8π2r

B
Br

»
8

�8

dϕ e
im
?
r2�t2 sinhϕ � � 1

4π2r

B
Br
�
θp�x2qK0pm

a
�x2q

�
.

Thus, we get

4pxq � m

4π2
?�x2

K1pm
a
�x2q , x

2   0 ,

where we keep for the moment a regular term only. There is also a singular term arising from differentiating θp�x2q
over r. We consider it later.

2) r   t, that is the space-time interval is time-like x2 ¡ 0. In this case we introduce the variable ϕ0 as follows

r?
t2 � r2

� sinhϕ0 ,
t?

r2 � r2
� coshϕ0

and get

4 pxq � � 1

16π2r

B
Br

»
8

�8

dϕ
�
e
�im

?
t2�r2 coshpϕ�ϕ0q � e

�im
?
t2�r2 coshpϕ�ϕ0q

	
�

� � 1

8π2r

B
Br

»
8

�8

dϕ e
�im

?
t2�r2 coshϕ � i

8πr

B
Br
�
θpx2qHp2q

0 pm
a
t2 � r2q

�
.

Performing differentiation, we find the following regular term

4 pxq � im

8π
?
x2
H
p2q
1 pm

?
x2q , x

2 ¡ 0 .

There is also a singular term, but we treat it together with the one coming from the first case.

3) Now we treat singular terms. We can combine them as follows

4sing pxq � i

8πr

Bθpx2q
Br H

p2q
0 pm

?
x2q � 1

4π2r

Bθp�x2q
Br K0pm

a
�x2q �

� δpx2q lim
sÑ�0

�
� i

4π
H
p2q
0 pmsq � 1

2π2
K0pmsq

�
� � i

4π
δpx2q .
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Combining these results and restoring the physical units, we obtain the following space-time expres-
sion for the Feynman propagator

4pxq � ~c

�
� i

4π
δpx2q � θpx2q i

8π

�mc
~

	2H
p2q
1

�
mc
~

?
x2
�

mc
~

?
x2

� θp�x2q 1

4π2

�mc
~

	2K1

�
mc
~
?�x2

�
mc
~
?�x2

�
.

In fact, the term corresponding to x2 ¡ 0 can be obtained from the term with x2   0 by analytic
continuation. If we take x2 ¡ 0 and define15

?�x2 � i
?
x2, then

K1

�
mc
~
?�x2

�
mc
~
?�x2

� K1

�
mc
~ i
?
x2
�

mc
~ i
?
x2

� iπ

2

H
p2q
1

�
mc
~

?
x2
�

mc
~

?
x2

.

This allows one to write the following compact expression

4pxq � ~c
4π2

�mc
~

	2K1

�
mc
~
?�x2 � iε

�
mc
~
?�x2 � iε

valid for all x. As is clear from the definition (3.37) or from the expression above, the physical
dimension of the Feynman propagator is E {`.

3.4 Wick’s theorem – operatorial approach

Here we demonstrate how to compute the correlation functions

x0 | T pφpx1qφpx2q . . . φpxnqq | 0y (3.40)

by using the field commutation relations. We start from x0 | T pφpx1qφpx2q | 0y. We know how to
compute this quantity. We have

φpxq � φ�pxq � φ�pxq ,
where φ�pxq and φ�pxq are positive and negative frequency parts of the Klein-Gordon field.

φ�pxq � 1

p2πq3{2
»

d~k?
2k0

�
a:p~kq eik0t�i~k~x

�
, φ�pxq � 1

p2πq3{2
»

d~k?
2k0

�
ap~kq e�ik0t�i~k~x

�
.

Here k0 �
a
~k2 �m2 ¡ 0. We recall that the notion of positive and negative frequency parts has

been introduced in section 3.1 As a general rule, a positive-frequency solution has as its coefficient
the creation operator that creates a particle, while a negative-frequency solution has as its coefficient
the annihilation operator that destroyes a particle. Thus,

φ�pxq|0y � 0 , x0|φ�pxq � 0 .

Consider, for instance, x0 ¡ y0. Then

T pφpxqφpyqq � φ�pxqφ�pyq � φ�pxqφ�pyq � φ�pxqφ�pyq � φ�pxqφ�pyq �
� φ�pxqφ�pyq � φ�pxqφ�pyq � φ�pyqφ�pxq � φ�pxqφ�pyq � rφ�pxq, φ�pyqs .

The right hand side of the last expression is brought to the normal order – all annihilation operators
are on the right of all creation operators. We can rewrite the last expression as

T pφpxqφpyqq � : φ�pxqφ�pyq � φ�pxqφ�pyq � φ�pyqφ�pxq � φ�pxqφ�pyq : �rφ�pxq, φ�pyqs �
� : φpxqφpyq : �rφ�pxq, φ�pyqs .

15This corresponds picking up the branch corresponding to
?�x2 � iε for x2 ¡ 0.
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Now, consider y0 ¡ x0. We get

T pφpxqφpyqq � φ�pyqφ�pxq � φ�pyqφ�pxq � φ�pyqφ�pxq � φ�pyqφ�pxq �
� φ�pyqφ�pxq � φ�pyqφ�pxq � φ�pxqφ�pyq � φ�pyqφ�pxq � rφ�pyq, φ�pxqs �
� : φpxqφpyq : �rφ�pyq, φ�pxqs .

Let us define the contraction of two fields as follows

φpxqφpyq �
$&
%
�
φ�pxq, φ�pyq�, x0 ¡ y0 ,

�
φ�pyq, φ�pxq�, y0 ¡ x0 .

One can easily recognize that the contraction is nothing else but the Feynman propagator

φpxqφpyq � 4px� yq . (3.41)

Thus, the relation between time-ordering and normal-ordering is given by

T pφpxqφpyqq �: φpxqφpyq � φpxqφpyq : .

With the new notation the result above is easy to generalize to an arbitrary number of fields

T pφpx1qφpx2q . . . φpxnqq �: φpx1qφpx2q . . . φpxnq � all possible contractions : .

This identity is known as Wick’s theorem. For instance, for the case of four fields Wick’s theorem
gives

T pφ1φ2φ3φ3q � : φ1φ2φ3φ4 � φ1φ2φ3φ4 � φ1φ2φ3φ4 � φ1φ2φ3φ4 �
� φ1φ2φ3φ4 � φ1φ2φ3φ4 � φ1φ2φ3φ4 �

� φ1φ2φ3φ4 � φ1φ2φ3φ4 � φ1φ2φ3φ4 : .

Any contraction can be replaced by the corresponding Feynman propagator which can be taken out
of the sign of the normal product, for instance,

φ1φ2φ3φ4 � 4px2 � x4q : φ1φ3 : .

In the vacuum expectation value (3.40), any term in which there remain uncontructed operators
gives zero. Only fully contracted terms survive, which for our example means that

x0 | T pφ1φ2φ3φ3q | 0y � 4px1 � x2q4px3 � x4q �4px1 � x3q4px2 � x4q �4px1 � x4q4px2 � x3q .

Thus, we found the same formula as by using the path integral approach.

The simplest way to prove Wick’s theorem is to use the mathematical induction. Assume that
the theorem is true for m � 1 fields and try to prove it for m fields. Without loss of generality, we
can restrict ourselves to the case x0

1 ¥ x0
2 ¥ x0

3 . . . ¥ x0
m. Then we have

T pφ1φ2 . . . φmq � φ1φ2 . . . φm � φ1T pφ2 . . . φmq .
Now we apply Wick’s theorem to m� 1 fields

T pφ1φ2 . . . φmq � pφ�1 � φ�1 q
"

: φ2 . . . φm � all possible contractions
not involving φ1

:

*
. (3.42)
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Here φ�1 can be moved in inside the normal product as it depends on the creation operator only. As
to φ�1 we have

φ�1 : φ2 . . . φm : � : φ2 . . . φm : φ�1 � rφ�1 , : φ2 . . . φm :s �
� : φ�1 φ2 . . . φm : � : rφ�1 , φ�2 sφ3 . . . φm : � . . .� φ2 . . . rφ�1 , φ�ms :�
� : φ�1 φ2 . . . φm � φ1φ2φ3 . . . φm � φ1φ2φ3 . . . φm � . . . :

Similarly, a term in (3.42) involving one contraction will produce all possible terms involving a single
contraction of φ1 with one of the other fields. Doing this with all the terms we eventually get all
possible contractions of all the fields, including φ1. This completes the induction.

3.5 Appendices

3.5.1 Fock space formalism in quantum mechanics

The importance of the formalism of second quantization derives from the fact that it permits per-
forming calculations which automatically take into account the combinatorial aspects arising from
the particle statistics (Bose-Einstein or Fermi-Dirac). In this appendix we recall the Fock space
formalism in the non-relativistic quantum mechanics.

Suppose we have a quantum-mechanical system of n identical bosonic particles described by the
Schrödinger operator

H � � ~2

2m

ņ

i�1

~∇2
i �

¸
i j

V p~xi, ~xjq , (3.43)

where we assumed for definiteness that particles interact by means of a pairwise potential V p~xi, ~xjq.
The system is described by the wave function ψp~x1, . . . , ~xnq whose time development is governed by
the Schrödinger equation

�
� ~2

2m

ņ

i�1

~∇2
i �

¸
i j

V p~xi, ~xjq
�
ψp~x1, . . . , ~xn, tq � i~

B
Btψp~x1, . . . , ~xn, tq . (3.44)

This gives a particular realization of our quantum-mechanical system, as we have chosen to realize
it in a particular Hilbert space being the space of square-integrable functions totally symmetric in
n coordinate variables ~xi. Another realization would be, for instance, to take a multi-particle wave
function in the momentum representation. Yet, we introduce here a novel Hilbert space, called the
Fock space, and provide the corresponding realization of our system in this space.

Introduce abstract operators Φ:p~xq and Φp~xq which satisfy the commutation relations�
Φp~x1q,Φ:p~x2q

� � δp~x1 � ~x2q ,�
Φp~x1q,Φp~x2q

� � 0 , rΦ:p~x1q,Φ:p~x2qs � 0 .
(3.45)

These algebraic relations are the same as those of creation and annihilation operators. We therefore
choose the vacuum state |0y such that it is annihilated by Φp~xq: Φp~xq|0y � 0. States in this space,
known as the Fock space, are obtained by applying to the vacuum any number of creation operators
Φ:. For instance, a state which contains n particles is given by a superposition

|χyn � 1?
n!

»
rdxsχnp~x1, . . . ~xn, tqΦ:p~x1qΦ:p~x2q . . .Φ:p~xnq|0y .
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Here χnp~x1, . . . ~xn, tq is the coefficient function, rdxs � ±n
i�1 d~xi and we assume that the time-

dependence of |χyn enters through this function. Since all Φ:p~xiq entering the definition of the state
commute with each other, the function χp~x1, . . . ~xnq is automatically symmetric under interchange
of coordinates. The scalar product in this Hilbert space is defined as follows. First we define the
conjugate vacuum x0| � |0y: which satisfies the relations

x0|Φ:p~xq � 0 , x0|0y � 1 .

Then for any two vectors corresponding to particle numbers n and m we have

mxζ|χyn � 1?
m!n!

»
rdysrdxs ζ�mp~y1, . . . , ~ymqχnp~x1, . . . , ~xnq �

� x0|Φp~ymq . . .Φp~y1qΦ:p~x1q . . .Φ:p~xnq|0y � δmn

»
rdxs ζ�n p~x1, . . . , ~xnqχnp~x1, . . . , ~xnq.

In particular, for the square of the norm of a state with an arbitrary number of particles we have

xχ|χy �
8̧

n�0

»
rdxs |χp~x1, . . . , ~xnq|2 .

Consider the following operator acting in the Fock space

H � � ~2

2m

»
d~xΦ:p~xq~∇2Φp~xq � 1

2

»
d~xd~y Φ:p~xqΦ:p~yqV p~x, ~yqΦp~xqΦp~yq . (3.46)

Note that the commutation relations (3.45) imply that the physical dimension rΦs of the operator Φ
is rΦs � `�3{2, where ` is a unit of length. The operator H is called the second quantized Hamiltonian.
Integrating by parts in the first term we can also write it in the form

H � ~2

2m

»
d~x BiΦ:p~xqBiΦp~xq � 1

2

»
d~xd~y Φ:p~xqΦ:p~yqV p~x, ~yqΦp~xqΦp~yq . (3.47)

Now we will show that the equation

H|χptqyn � iBt|χptqyn (3.48)

is equivalent to (3.44) upon identifying χnp~x1, . . . , ~xnq with ψp~x1, . . . , ~xnq. We apply

H|χyn � 1?
n!

»
rdxsχnp~x1, . . . ~xn, tqH Φ:p~x1qΦ:p~x2q . . .Φ:p~xnq|0y .

Further computation of how the second quantized Hamiltonian H acts on the state

Φ:p~x1qΦ:p~x2q . . .Φ:p~xnq|0y

will be split in two parts. First, we compute the action of the kinetic part of (3.46) on the n-particle
state and, second, we compute the action of the potential part. The whole computation is a bit
tedious but it is worth doing it in detail. We have
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1?
n!

»
rdxs

»
d~x
�
� ~2

2m

	
χnp~x1, . . . ~xn, tqΦ:p~xq~∇2Φp~xqΦ:p~x2q . . .Φ:p~xnq|0y �

� 1?
n!

»
rdxsd~x

ņ

i�1

�
� ~2

2m

	
χnp~x1, . . . ~xn, tqΦ:p~xqΦ:px1q . . . ~∇2

xrΦp~xq,Φ:p~xiqs . . .Φ:p~xnq|0y �

� 1?
n!

»
rdxsd~x

ņ

i�1

�
� ~2

2m

	
χnp~x1, . . . ~xn, tqΦ:p~xqΦ:p~x1q . . . ~∇2

xδp~x� ~xiq . . .Φ:p~xnq|0y �

� 1?
n!

»
rdxsd~x

ņ

i�1

�
� ~2

2m

	
χnp~x1, . . . ~xn, tqΦ:p~xqΦ:p~x1q . . . ~∇2

xiδp~x� ~xiq . . .Φ:p~xnq|0y �

� 1?
n!

»
rdxsd~x

ņ

i�1

�
� ~2

2m
~∇2
xiχnp~x1, . . . ~xn, tq

	
Φ:p~xqΦ:p~x1q . . . δp~x� ~xiq . . .Φ:p~xnq|0y �

� 1?
n!

»
rdxs

ņ

i�1

�
� ~2

2m
~∇2
xiχnp~x1, . . . ~xn, tq

	
Φ:p~x1qΦ:p~x2q . . . . . .Φ:p~xnq|0y .

Here we have integrated ~∇2
xi by parts with the subsequent integration over x and also used the

fact that the operators Φ:p~xiq commute between themselves, which allowed us to bring them to the
original order. Then, for the potential part we get

1

2

1?
n!

»
rdxsd~xd~y χnp~x1, . . . ~xn, tqΦ:p~xqΦ:p~yqV p~x, ~yqΦp~xqΦp~yqΦ:p~x1q . . .Φ:p~xnq|0y �

� 1

2

1?
n!

»
rdxsd~xd~y

ņ

i�1

ņ

j�i
χnp~x1, . . . ~xn, tqΦ:p~xqΦ:p~yqV p~x, ~yq �

�Φ:p~x1q . . . rΦp~yq,Φ:p~xjqslooooooomooooooon
δp~y�~xjq

. . . rΦp~xq,Φ:p~xiqslooooooomooooooon
δp~x�~xiq

. . .Φ:p~xnq|0y �

� 1

2

1?
n!

»
rdxs

ņ

i�1

ņ

j�i
V p~xi, ~xjqχnp~x1, . . . ~xn, tqΦ:p~x1qΦ:p~x2q . . . . . .Φ:p~xnq|0y �

� 1?
n!

»
rdxs

ņ

i j
V p~xi, ~xjqχnp~x1, . . . ~xn, tqΦ:p~x1qΦ:p~x2q . . . . . .Φ:p~xnq|0y .

Thus, we have shown that

H|χyn � 1?
n!

»
rdxs

�
� ~2

2m

ņ

i�1

~∇2
xi �

ņ

i j
V p~xi, ~xjq

	
χnp~x1, . . . ~xn, tq �

�Φ:p~x1qΦ:p~x2q . . . . . .Φ:p~xnq|0y .

Hence, if χnp~x1, . . . ~xn, tq coincides with the wave function ψp~x1, . . . , ~xn, tq evolving according to
(3.44), we find that

H|χyn � i~
B
Bt |χyn .

In this way we have shown that the standard wave function description of a quantum mechanical
model governed by the Schrödinger equation (3.44) is equivalent to evolution of the Fock space
vector |χyn under the second quantized Hamiltonian H.

Introduce the so-called number operator

N �
»

dxΦ:p~xqΦp~xq (3.49)
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which is indeed a dimensionless quantity. The characteristic feature of the Hamiltonian H is that it
commutes with the number operator

rH, N s � 0 . (3.50)

This means that the quantum-mechanical Hamiltonian preserves a number of particles and this is a
reason why we are able to restrict our consideration to the n-particle sector of the Fock space.

Further, we can consider the Heisenberg picture where the operators are assumed to be time-
dependent with the time evolution described by the Heisenberg equations of motion

BΦ

Bt � i

~
rH,Φs ,

BΦ:

Bt � i

~
rH,Φ:s .

Explicitly, they are

i~
BΦp~xq
Bt � � ~2

2m
~∇2Φp~xq �

»
d~y V p~x, ~yqΦ:p~yqΦp~yqΦp~xq ,

i~
BΦ:p~xq
Bt � ~2

2m
~∇2Φ:p~xq � Φ:p~xq

»
d~y V p~x, ~yqΦ:p~yqΦp~yq .

Now we would like to show that the second quantized Hamiltonian can be viewed as a coming
from quantization of an underlying classical field theory. We can rescale Φ Ñ ?

~Φ. The rescaled
operators have the commutation relation�

Φp~x1q,Φ:p~x2q
� � ~ δp~x1 � ~x2q (3.51)

and their dimension is rΦs � ~1{2`�3{2. In terms of rescaled operators the Hamiltonian reads

H � ~
2m

»
dx BiΦ:p~xqBiΦp~xq � 1

2~2

»
d~xd~y Φ:p~xqΦ:p~yqV p~x, ~yqΦp~xqΦp~yq . (3.52)

The advantage of this rescaling is that we can think of (3.51) as been result of quantization of the
Poisson bracket for the complex scalar field Φpxq

tΦp~xq,Φ�p~yqu � iδp~x� ~yq . (3.53)

The Hamiltonian and the Poisson bracket above define a classical field theory with the action

SrΦ,Φ�s �
»

d ~xdt
�
� iΦ�BtΦ

	
�
»

dtH , (3.54)

where the Hamiltonian is

H � ~
2m

»
d~x BiΦ�p~xqBiΦp~xq � 1

2~2

»
d~xd~y Φ�p~xqΦ�p~yqV p~x, ~yqΦp~xqΦp~yq . (3.55)

Note that this action is of the first order in time derivative (this reflects its non-relativistic nature)
and it has the proper physical dimension of the Planck constant rSs � ~. One can check that
the classical equations of motion derived from the action SrΦ,Φ�s coincide with the Hamiltonian
equations of motion

BΦ

Bt � tH,Φu , BΦ�

Bt � tH,Φ�u .
One should not be confused by appearance of ~ in the classical action, the Planck constant is there
for dimensional reasons, i.e. to provide the correct engineering dimension for the Hamiltonian and
the action.

The Hamiltonian of the type (3.52) arises in the non-relativistic limit of the corresponding Hamil-
tonian for a complex Klein-Gordon field.

Show this!
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3.5.2 Relevan formulae involving Bessel functions

To be ex-
tended

The Mehler-Sonine representation

K0pzq � 1

2

» �8
�8

dt eiz sinh t �
» 8

0

dt cospz sinh tq . (3.56)

Hp1q
ν pzq � e�

1
2 iπν

iπ

» 8
�8

dt eiz cosh t�νt , (3.57)

Hp2q
ν pzq � �e

1
2 iπν

iπ

» 8
�8

dt e�iz cosh t�νt . (3.58)

Analytic continuation

K1pixq � �π
2
H
p2q
1 pxq , x ¡ 0 .
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Chapter 4

Dirac field

I remember that when someone had started to
teach me about creation and annihilation
operators, that this operator creates an electron. I
said ‘How do you create an electron? It disagrees
with the conservation of charge’ .

Richard Feynman
Nobel Prize Lecture

Until now, everyone thought that the Dirac
equation referred directly to physical particles.
Now, in field theory, we recognize that the
equations refer to a sublevel. Experimentally we
are concerned with particles, yet the old equations
describe fields.... When you begin with field
equations, you operate on a level where the
particles are not there from the start. It is when
you solve the field equations that you see the
emergence of particles.

Julian Schwinger

4.1 Introducing the Dirac equation

In 1928 Dirac discovered the relativistic equation which now bears his name trying to overcome
the difficulties of negative probability densities of the Klein-Gordon equation. This equation has a
special importance because it describes particles with spin 1

2 . The reasoning which led Dirac to his
equation was as follows: If we wish to prevent the occurrence of negative probability densities, we
must avoid time derivatives in the expression for ρ. The wave equation must therefore not contain
time derivatives higher than the first order. Relativistic covariance, furthermore, requires that that
there be essentially complete symmetry in the treatment of the spatial and time components. Thus
the Dirac wave function must satisfy the first-order linear differential equation in all four coordinates.
The linearity is required by the superposition principle of quantum mechanics. Finally, we also want
that the wave function obeys the Klein-Gordon equation

� 1

c2
B2

Bt2 �
B2

Bx2
i

� m2c2

~2

	
ψpxq � 0 ,
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because in this case it describes a free relativistic particle with the dispersion relation

E2 � p2c2 �m2c4 .

Thus, the equation we are looking for could have the form

i~
Bψ
Bt �

~c
i

�
α1

Bψ
Bx1

� α2
Bψ
Bx2

� α3
Bψ
Bx3

	
� βmc2ψ � H ψ , (4.1)

i.e. look similar to the standard Schrödinder equation containing the first time derivative of the
wave function. What is quite striking is that the coefficients αi entering this equation cannot be just
numbers, as the equation would not be then even invariant under usual three-dimensional rotations.
Also the wave function ψ cannot be just a scalar, because the probability density ρ � ψ�ψ must be
a time component of the four vector.

This arguing led Dirac to consider equation (4.1) as a matrix equation. In analogy with a non-
relativistic quantum mechanics of electron, the wave function is considered as a column with n
components

ψ �

�
��

ψ1

...
ψn

�
� ,

while constant coefficients αi and β are understood as n � n matrices. To proceed, we rewrite the
equation (4.1) in the form

�
i~
Bψ
Bt � i~c αi

B
Bxi � βmc2

	
ψ � 0

and act on this equation with the operator

i~
Bψ
Bt � i~c αi

B
Bxi � βmc2 .

As a result, we get

� ~2 B2ψ

Bt2 � ~2c2
αiαj � αjαi

2

B2ψ

BxiBxj � i~mc3pαiβ � βαiq B
2ψ

BxiBt � pmc
2q2β2ψ � 0 .

We further multiply this equality with �1{pc2~2q getting thereby

1

c2
B2ψ

Bt2 � αiαj � αjαi
2

B2ψ

BxiBxj � i
mc

~
pαiβ � βαiq B

2ψ

BxiBt �
m2c2

~2
β2ψ � 0 .

Thus, we see that ψ would satisfy the Klein-Gordon equation, provided the following relations are
satisfied

αiαj � αjαi � 2δij , αiβ � βαi � 0 , β2 � 1 .

In addition to these conditions on the matrices αi and β we require that they are hermitian, in
which case the Dirac Hamiltonian H in equation (4.1) will be a hermitian operator. Further, from
the commutation relations we see that α2

i � β2 � 1, so eigenvalues of all the matrices are just �1
or �1. From αi � �βαiβ we conclude that Trαi � 0. Analogously,

Trβ � Tr pα2
iβq � Tr pαiβαiq � �Trβ ,
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so that Trβ � 0. This implies that the number of eigenvalues equal to �1 must coincide with the
number of eigenvalues equal to �1, that is the number n defining the size of the matrices αi, β must
be even. In the minimal dimension n � 2, we find the three Pauli matrices

σ1 �
�

0 1
1 0



, σ2 �

�
0 �i
i 0



, σ3 �

�
1 0
0 �1



. (4.2)

which are hermitian, traceless and obey the desired relation tσi, σju � 2δij . However, for n � 2
the fourth independent matrix is just an identity matrix1, which cannot be identified with β. It
appears that the minimal dimension where one can construct the four matrices αi, β with the desired
properties is equal to four. In one concrete representation, which matrices look as follows

αi �
�

0 σi

σi 0



, β �

�
1 0
0 �1



. (4.3)

4.2 The Dirac equation and Lorentz transformations

To discuss covariant properties of the Dirac equation it is desirable to rewrite the Dirac equation in
the covariant four-component form which takes into account the symmetry between time and space.
To do this, we multiply (4.2) by β{c and introduce the notation

γ0 � β , γi � βαi , i � 1, 2, 3 . (4.4)

and taking into account that x0 � ct and B
Bx0 � B

cBt , we obtain

�
i~
�
γ0 B
Bx0

� γi
B
Bxi

	
�mc

�
ψ � 0 ,

or, more elegantly, �
iγµBµ � mc

~

	
ψ � 0 . (4.5)

In natural units ~ � c � 1 this equation reads�
iγµBµ �m

	
ψ � 0 . (4.6)

The newly introduced matrices γµ satisfy the following commutation relations2

γµγν � γνγµ � 2gµν1 . (4.7)

The free algebra generated by the symbols γµ modulo the relation (4.7) is called the Clifford algebra.
From the definition (4.4) it is clear that γ0 is hermitian and all γi are anti-hermitian. In our
representation the γ-matrices look like

γ0 �
�

1 0
0 �1



, γi �

�
0 σi

�σi 0



. (4.8)

This representation of γ-matrices in which γ0 is diagonal is called the Dirac representation.

Now we investigate properties of the γ-matrices a bit further. From four γµ one can construct
16 linearly independent matrices

1Together with the identity matrix the Pauli matrices form a complete set of linearly independent matrices over
which any hermitian matrix can be decomposed.

2Indeed, one can easily verify, for instance, that γiγj � γjγi � βαiβαj � βαjβαi � �αiαj � αjαi � �2δij , and
γiγ0 � γ0γi � βαiβ � ββαi � �αi � αi � 0.
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• identity matrix 1 � gµµγµγµ (no summation in µ);

• four matrices γµ, µ � 0, . . . , 3;

• six matrices σµν � iγ
µγν�γνγµ

2 � iγµγν , µ   ν; µ, ν � 0, . . . , 3;

• one matrix γ5 � �iγ0γ1γ2γ3;

• four matrices τµ � γµγ5, µ � 0, . . . , 3.

It is not difficult to see that all other possible products of γ-matrices and their liner combinations are
expressible via the sixteen matrices introduced above by means of lineal relations. To show that these
sixteen matrix are linear independent, we first prove that they all have vanishing traces. Consider
for instance γµ. From (4.7) we see that γνγ

ν � 1, where ν is fixed and there is no summation in ν.
Then

Trγµ � Trpγνγνγµq |ν�µ� 1
2Trγνpγµγν � γνγµq |ν�µ� 0 .

Analogously, one can show that the traces of all other matrices are zero. Exercise for the reader –
show this! In particular Trγ5 � 0. The fact that traces of all sixteen matrices, except the identity
matrix, is zero can be used to show that they are linearly independent. Assume the opposite. Let

F � a1� bµγµ � cµνσµν � dµτµ � eγ5 ,

where a, b, c, d, e are arbitrary complex coefficients. If all matrices are linearly independent then F
must be equal to zero. Taking trace of F we find a � 0. Let us now consider γνF and take the trace
of this expression, this will give bν � 0. Proceeding in this way, one can show that all coefficients in
F are zero, i.e. all the sixteen matrices are linearly independent.

Note that the Clifford algebra relations, as well as all the relations derived from them above, are
invariant with respect to the unitary transformations

γµ Ñ OγµO�1 .

Now we are ready to show the covariance of the Dirac equation with respect to the Lorentz
transformations. Assume that under the Lorentz transformation

x
1µ � Λµνx

ν , ηµνΛµαΛνβ � ηαβ

the object ψpxq transforms as follows ψpxq Ñ ψ1px1q � SpΛqψpxq, where SpΛq is a matrix which
depends of course on the transformation matrix Λ. We recall that the general form of Λ is

Λ �
�
� 1 0

0 R

�

�
����

1b
1� v2

c2

� 1b
1� v2

c2

vt

c

� 1b
1� v2

c2

v
c 1�

�
1b

1� v2

c2

� 1
	
vbvt
v2

�
��� ,

where R is a three-dimensional rotation and v is a velocity of the boost.

The relativity principle asserts that in the new Lorentz frame the Dirac equation must look the
same, that is �

iγµ
B

Bx1µ �
mc

~

	
ψ1px1q � 0 .

Note that
B
Bxµ �

Bx1ν
Bxµ

B
Bx1ν � Λνµ

B
Bx1ν or Λνµ

B
Bxν �

B
Bx1µ .
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Substituting ψ1px1q and multiplying the Dirac equation from the left with S�1pΛq, we get

�
iS�1pΛqγµSpΛq B

Bx1µ �
mc

~

	
ψpxq �

�
iS�1pΛqγµSpΛqΛνµ

B
Bxν �

mc

~

	
ψpxq � 0 .

Thus, the covariance of the equation requires

S�1γµS Λµν � γµ ,

which is the same as

S�1γµS � Λµνγ
ν . (4.9)

To solve this equation for S, we first attempt an infinitezimal analysis, that is we assume that S is
of the form

S � 1� λµνωµν � . . . ,

where Λµν � gµν�ωµν� . . . and ωµν � �ωνµ. Thus, at leading order we find the following eqiuation

γµλρλ � λρλγµ � gµrργλs � gµrργλs � 1
2 pgµργλ � gµλγρq . (4.10)

This is solved by

λµν � 1

8
γrµγνs � 1

4
γµγν . (4.11)

The finite transformation would have the form

S � exp
�1

4

3̧

µ,ν�0

γµγνωµν

	
� exp

�1

2

¸
µ ν

γµγνωµν

	
. (4.12)

Let φ denotes a usual rotation in the plane ij, then one can show that the corresponding 4 � 4
matrix S has the form

Sijpφq � expp 1
2γ

iγjφq � 1 cos
φ

2
� γiγj sin

φ

2
. (4.13)

For the Lorentz boosts we obtain

Sipφq � expp 1
2γ

0γiφq � 1 cosh
φ

2
� γ0γi sinh

φ

2
. (4.14)

It is clear from formula (4.13) after the rotation by the angle 2π the coordinate system turns into
itself, while Sijp2πq � �1, that is the spinor ψ will change its overall sign. Thus, the spinor itself
cannot be an observable quantity, but its quadratic combinations are.

Notice that the rotations in ij-plane we can write in the 2� 2 block-diagonal form3

Sijpφq �
�

1 cos φ2 � iεijkσk sin φ
2 0

0 1 cos φ2 � iεijkσk sin φ
2



. (4.15)

Hence, we we split the spinor into two two-component spinors as

ψ �
�
φ
χ



, (4.16)

3We use that σiσj � 1δij � iεijkσk and the fact that Sij is defined for i � j.
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then under rotations φ and ψ transform completely independently, each of them realize in fact an
irreducible spinor representation of the rotation group SO(3).

For space rotations

S: � expp 1
2

¸
i j

γj:γi:ωijq � expp 1
2

¸
i j

γjγiωijq � expp� 1
2

¸
i j

γiγjωijq � S�1 ,

because γi are anti-hermitian. Thus, for space rotations S is unitary: S:S � 1. However, for boosts
we find

S: � expp 1
2γ

i:γ0:ω0iq � expp� 1
2γ

iγ0ω0iq � expp 1
2γ

0γiω0iq � S ,

as γ0 is hermitian. Both formulae can be combined in one

S: � γ0S�1γ0 .

This motivates to introduce a Dirac conjugate spinor

ψ̄ � ψ�tγ0 . (4.17)

Under Lorentz transformations it will transform as follows

ψ1px1q � pSψq�tγ0 � ψ�tS:γ0 � ψ�tγ0γ0S:γ0 � ψ̄S�1 . (4.18)

This allows us to deduce that the bilinear combination like ψ̄ψ is a Lorentz scalar.

We have not yet found the transformation of the spinor field with respect to the parity transfor-
mation P: ~x Ñ �~x, t Ñ t. The Dirac equation will remain invariant under this transformation if
we requite that the parity operation P is realized as a multiplication of a spinor by a matrix P

ψ1px1q � Pψpxq ,
where P should obey the relations

P�1γ0P � γ0 , P�1γiP � �γi , (4.19)

which are satisfied by taking P � ηpγ
0. Since P is required to be a unitary operator P :P � 1, ηp

must be a phase |ηp| � 1. The eigenvalues of P are determined in the usual way, that is from the
condition that a parity transformation applied twice is equivalent to the identity: P 2 � 1. However,
for a spinor the double parity transformation can be considered as a rotation on the angle 2π, where
the spinor change the sign. Thus, two alternative definitions of parity operation are possible

P 2 � 1 or P 2 � �1 .
Thus, the eigenvalues can be

ηp � �1 or ηp � �i .
The number ηp is called an internal parity. Note also that P anti-commutes with the matrix γ5:
rP, γ5s � 0. If we act on ψ written in the form (4.16) with P we get

Pψ � ηγ0ψ �
�

ηpφ
�ηpχ



,

which shows that φ and χ form in fact two spinor representations of the rotation group O(3) but of
opposite internal parity.

Analogously, one can show that the following bilinear combinations transform under Lorentz
transformations as
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• ψ̄ψ – a scalar;

• ψ̄γ5ψ – a pseudo-scalar;

• ψ̄γµψ – a vector;

• ψ̄γ5γµψ – a pseudo-vector vector.

4.3 On various representations of the Dirac equation

If we transform the spinor as
ψ Ñ ψ1 � Oψ

and simultaneously transform γµ Ñ γ1µ � OγµO�1 then the Dirac equation remains invariant and
the Clifford algebra does not change its form

γ1µγ1ν � γ1νγ1µ � 2gµν1 . (4.20)

Thus, using this freedom one can choose various representations for gamma-matrices. One of them,
the Dirac representation, we have already introduced

γ0 �
�

1 0
0 �1



, γi �

�
0 σi

�σi 0



. (4.21)

Another convenient representation is the so-called Weyl or chiral representation

γ0 �
�

0 1

1 0



, γi �

�
0 σi

�σi 0



. (4.22)

In this representation all gamma-matrices are off-diagonal. The transformation is given by

OγdO
�1 � γc , O � 1?

2

�
1 �1
1 1



, O:O � 1 ,

where γd and γc are the gamma-matrices in the Dirac and chiral representation, respectively. In the
chiral basis the equations for the two-component spinors take the form

1

c

Bφ
Bt � σi

Bφ
Bxi � i

mc

~
χ � 0 . (4.23)

1

c

Bχ
Bt � σi

Bχ
Bxi � i

mc

~
φ � 0 (4.24)

Since the matrices γi for i � 1, 2, 3 are the same in both the Dirac and the chiral representations, φ
and χ continue to transform independently and irreducibly under the action of the rotation group
SO(3). However, a new remarkable fact is now that φ and χ transform independently under proper
Lorentz transformations! Indeed, the matrix Sipφq takes in the chiral basis the following form

Sipφq �
�

1 cosh φ
2 � σi sinh φ

2 0

0 1 cosh φ
2 � σi sinh φ

2



. (4.25)

In reality one should not be surprised that the representation of the proper Lorentz group on four-
dimensional spinors appear to be reducible. Since γ5 anti-commutes with all gamma-matrices, it
commutes with a matrix of Lorentz transformations

rγ5, SpΛqs � 0 ,
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which precisely means that the representation is reducible. It is just that in the Weyl basis this
fact becomes obvious. We see however that on two-dimensional spinors we have two different rep-
resentations of the Lorentz group. These two-dimensional representations are inequivalent. Indeed,
equivalence would mean an existence of an invertible operator V , such that

V
�
1 cosh

φ

2
� σi sinh

φ

2

	
V �1 � 1 cosh

φ

2
� σi sinh

φ

2
,

which implies that
V σiV �1 � �σi , for all i � 1, 2, 3.

It is easy to see that a matrix which must anti-commute with all three Pauli matrices does not exist.

If mass vanishes then eqs.(4.23) split into two independent (uncoupled) equations for φ and
ψ, which are known as the Weyl equations. Thus, when particle of spin 1{2 is massless it can
be consistently described by one two-component spinor, satisfying the Weyl equation. The Weyl
equation is covariant with respect to the proper Lorentz group but it is not invariant under parity.

4.4 Solution of the Dirac equation

We start with the Dirac equation �
iγµBµ � mc

~

	
ψ � 0 . (4.26)

The general solution can be represented as the Fourier integral

ψp~x, tq �
»

d~p

p2π~q3 e
� i

~Et� i
~ ~p~xψppq (4.27)

Substitution gives �
Eγ0 � c γipi �mc21

	
ψppq � 0 . (4.28)

Multiplying this equation from the left by γ0, we see that it is equivalent to the eigenvalue problem
for the Dirac Hamiltonian H

H ψ �
�
c αipi �mc2β

	
ψ � Eψ .

In terms of two-component spinors equation (4.28) splits into two

pE �mc2qφ� c ~σ~pχ � 0

�c ~σ~p φ� pE �mc2qχ � 0 .

This system can be solved provided the following determinant vanishes���� E �mc2 �c ~σ~p
�c ~σ~p E �mc2

���� � E2 � pmc2q2 � c2~p2 � 0 .

Thus, we again rediscover the dispersion relation of the relativistic particle which has two solutions

E � �
a
~p2c2 �m2c4 .

That is for a fixed momentum ~p the Dirac Hamiltonian has solutions with positive and negative
energy. If the sign of the energy is chosen, then one of the two-component spinors can be expressed
via the other, for instance,

ψ �
�

φ
c ~σ~p

E�mc2φ



. (4.29)

46



Figure 4.1: Helicity. In the first picture the spin and velocity of a particle are parallel (helicity +1).
In the second picture the spin and velocity are anti-parallel (helicity -1). Neutrino is left-handed
while anti-neutrino is right-handed.

We therefore consider now the positive and negative energy solutions

u� �
�

φ
c ~σ~p

Eppq�mc2φ

�
, u� �

�
φ

c ~σ~p
�Eppq�mc2φ

�
, (4.30)

where in both formulas Eppq �
a
~p2c2 �m2c4 is a positive expression. Since φ remains an arbitrary

two-component spinor, we have two independent solutions with positive energy and two independent
solutions with negative energy.

Existence of two independent solutions for each sign of energy can be explained by the fact that
there exist an operator which commutes with the Dirac Hamiltonian. It is a helicity operator given
by

S � 1

|~p|γ
0γ5γipi � 1

|~p|
�
~σ~p 0
0 ~σ~p



.

Since rH ,S s � 0, these two operators can be simultaneously diagonalized. Further, due to the fact
that S 2 � 1, eigenvalues of S are �1. Thus, a state with positive energy can be also an eigenstate
of the helicity operator with either positive or negative helicity, and the same holds for states with
negative energy. We first present the corresponding positive energy solutions (with for the moment
undetermined overall normalization N )

u1
� � N

�
����������

p3 � |~p|

p1 � ip2

c|~p|pp3�|~p|q
mc2�Eppq

c|~p|pp1�ip2q
mc2�Eppq

�
���������
, u2

� � N

�
����������

�pp1 � ip2q

p3 � |~p|
c|~p|pp1�ip2q
mc2�Eppq

� c|~p|pp3�|~p|q
mc2�Eppq

�
���������
. (4.31)

Here u1
� has the helicity +1 and u2

� has the helicity �1, respectively. Analogously, solutions with
negative energy are

u1
� � N

�
����������

� c|~p|pp3�|~p|q
mc2�Eppq

� c|~p|pp1�ip2q
mc2�Eppq

p3 � |~p|

p1 � ip2

�
���������
, u2

� � N

�
����������

� c|~p|pp1�ip2q
mc2�Eppq

c|~p|pp3�|~p|q
mc2�Eppq

�pp1 � ip2q

p3 � |~p|

�
���������
. (4.32)
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Here u1
� has the helicity +1 and u2

� has the helicity �1, respectively. Having these explicit solutions,
one can see that it is possible to chose a normalization, namely,

N � 1

2

d
mc2 � Eppq

mc2p~p2 � p3|~p|q

such that

ūr�ppqus�ppq � pur�ppqq�γ0us�ppq � δrs , ūr�ppqus�ppq � pur�ppqq�γ0us�ppq � �δrs , r, s � 1, 2 .

The fact that spinors of different helicity are orthogonal follows from the fact they belong to different
eigenvalues of the helicity operator S and also from the fact that rS , γ0s � 0. However, since
rH , γ0s � 0, in general ūr�u

s
� � 0. However, if we also change the sign of momentum in one of the

spinors, then the orthogonality holds

ūr�ppqus�p�pq � 0 , r, s,� 1, 2.

The proof of this relation is based on the identity

γ0H ppqγ0 � H p�pq .

We have
H ppqu�ppq � Eppqu�ppq ùñ u:�ppqH ppq � Eppqu:�ppq ,

giving
ū�ppq γ0H ppqγ0looooomooooon

H p�pq

� Eppqū�ppq .

Multiplying the last formula by up � pq from the right, we get

ū�ppqH p�pqu�p�pqloooooooomoooooooon
�Eppqu�p�pq

� Eppq ū�ppqu�p�pq .

Thus, we get a contradiction unless ū�ppqu�p�pq � 0. Similarly, one shows that ū�ppqu�p�pq � 0.
We denote two linearly independent orthogonal negative energy solutions for momentum �~p by
vs�ppq. For reader’s convenience, we give here a complete set of orthonormality relations

ūr�ppqus�ppq � δrs , v̄r�ppqvs�ppq � �δrs ,
v̄r�ppqus�ppq � 0 , ūr�ppqvs�ppq � 0 .

(4.33)

There is also another important issue related to the solutions of the Dirac equations we found.

Introduce the following operators4

Λ�p~pq �
c{p�mc21

2mc2
� γ0Eppq � cγipi �mc21

2mc2
,

Λ�p~pq �
mc21� c{p

2mc2
� mc21� γ0Eppq � cγipi

2mc2
.

(4.34)

It is not difficult to see that Λ�p~pq are projectors and they provide an orthogonal decomposition of
the unity

Λ2
� � Λ� , Λ2

� � Λ� , Λ�Λ� � 0 , Λ� � Λ� � 1 .

4Here we introduced the standard notation {p which means {p � γµpµ � γ0~p0 � γi~pi � 1
c
γ0E � γi~pi.
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Projectors Λ� and Λ� project on the solutions with positive and negative energy, that is

Λ�p~pqu1,2
� ppq � u1,2

� ppq ,
Λ�p~pq v1,2

� ppq � v1,2
� ppq .

(4.35)

It can be further found that the following relations are true

Λ�p~pqij �
2̧

r�1

pur�qipūr�qj �
2̧

r�1

pur�qippur�q:γ0qj ,

Λ�p~pqij � �
2̧

r�1

pvr�qipv̄r�qj � �
2̧

r�1

pvr�qippvr�q:γ0qj .
(4.36)

One remark is in order. For massive particle the helicity operator does not commute with
Lorentz transformations, i.e. the notion of helicity (that is being right-handed or left-handed) does
depend on a choice of the Lorentz frame. By changing the Lorentz frame right-handed particle
might become a left-handed one. At first it might seem surprizing because we solved the Dirac
equation and associated to each solution a definite helicity. However, one has to realize that the
Dirac Hamiltonian itself does not commute with Lorentz transformations – it represents energy
which changes under the Lorentz transformations. Thus, fixing H we are not allowed anymore to
perform Lorentz transformations, and, therefore, the helicity can be associated to the eigenstates of
the Hamiltonian.5

Thus, an expansion of a Dirac field ψpxq over a complete set of orthogonal solutions is given by

ψpxq �
»

d~p

p2π~q3{2
� mc

Eppq
	1{2 2̧

r�1

�
brppqur�ppqe�

i
~pµx

µ � d�r ppqvr�ppqe
i
~pµx

µ
	
. (4.37)

To check the correctness of this expression, we act on ψpxq with the Dirac operator iγµBµ� mc
~ and

taking into account that�
iγ0 B

cBt � iγi
B
Bxi �

mc

~

	
e�

i
~ pEt�~p~xq � γ0

c~

�
Eppq �H ppq

	
e�

i
~ pEt�~p~xq ,�

iγ0 B
cBt � iγi

B
Bxi �

mc

~

	
e�

i
~ pEt�~p~xq � �γ

0

c~

�
Eppq �H p�pq

	
e�

i
~ pEt�~p~xq

obtain
�
iγµBµ � mc

~

	
ψ � 0. The normalization prefactor in the Fourier transform is chosen for the

later convenience.

We finish the section with the following comment. The helicity operator is not the only one
which commutes with the Dirac Hamiltonian. Another important operator is the total momentum
(that is the orbital angular momentum plus spin)

Ji � iεijkxjpk � ~
2

�
σi 0
0 σi



.

Here xi and pi are the usual operators of coordinate and momentum. One verifies that rH ,Jis � 0.

4.5 Charge conjugation and anti-particles

So far our discussion of the Dirac equation, which was originally designed to described electrons, did
not involve the electric charge. The point is that the properties of electron concerning its electric

5It is a general statement that passing to the Hamiltonian formalism one breaks the Lorentz invariance, since one
fixes the preferred time direction.
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charge show up when we put an electron in an external electromagnetic field. The Dirac equation
which describes electrons coupled to an external electromagnetic field has the form�

γµ
�
i~ Bµ � e

c
Aµ

	
�mc

�
ψ � 0 . (4.38)

This equation has a new fundamental symmetry which is the symmetry of the theory with respect
to the change of the sign of the electric charge, also considered as replacement of a particle by its
anti-particle. This symmetry is known under the name the charge conjugation. This symmetry
states that there is a one-to-one correspondence between solutions of the Dirac equation (4.38) with
a negative energy and the wave function of a positron (that is a particle which have the same mass
as electron but opposite sign electric charge). According to physical requirements, we regard a wave
function of a positron ψc as a positive energy solution of an equation�

γµ
�
i~ Bµ � e

c
Aµ

	
�mc

�
ψc � 0 . (4.39)

Since sing of e played no role so far we can ask a general question about the existence of a transfor-
mation which transforms (4.38) into (4.39) and vice versa. We see that to change the relative sign
between i~ Bµ and e

cAµ it is enough to apply the complex conjugation to (4.38). This gives�
pγµq�

�
i~ Bµ � e

c
Aµ

	
�mc

�
ψ� � 0 . (4.40)

Assuming an existence of a matrix C which provides the relation ψ� � pCγ0q�1ψc, we bring the
equation above to the form�

pCγ0qγµ�pCγ0q�1
�
i~ Bµ � e

c
Aµ

	
�mc

�
ψc � 0 . (4.41)

Thus, if we subject C to the condition

pCγ0qγµ�pCγ0q�1 � �γµ or pCγ0q�1γµpCγ0q � �γµ� ,

we would obtain the desired transformation. Under the map γµ Ñ �γµ� the Clifford algebra
relations are invariant and, therefore, such a matrix C must exist. We simply give an answer

C � iγ2γ0 ,

where C has the following properties

C2 � �1 , C� � C , C:C � 1 .

Thus,

ψc � Cγ0ψ� � iγ2ψ� � Cψ
t
, (4.42)

as pγ0qt � γ0. By using explicit expressions for ur� is is easy to establish that

H ppqpCu1�
� q � �EppqpCu1�

� q , H ppqpCu1�
� q � EppqpCu1�

� q ,

H ppqpCu2�
� q � �EppqpCu2�

� q , H ppqpCu2�
� q � EppqpCu2�

� q ,
(4.43)

as well as

S pCu1�
� q � �pCu1�

� q , S pCu1�
� q � �pCu1�

� q ,

S pCu2�
� q � pCu2�

� q , S pCu2�
� q � pCu2�

� q .
(4.44)
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This gives a hint that the following relations hold, as one can verify by explicit calculation,

Cu1�
� ppq � u2

�ppq , Cu2�
� ppq � �u1

�ppq ,
Cv1�

� ppq � u2
�p�pq , Cv2�

� ppq � �u1
�p�pq . (4.45)

Thus, formally the Dirac theory is invariant under the following sequence of operations

1) Complex conjugate;

2) Multiplication by Cγ0;

3) Change of Aµ Ñ �Aµ .

The physical meaning of charge conjugation is that for any physically realizable state of electron
in the field Aµ corresponds a physically realizable state of a positron in the field �Aµ. Thus, the
operation of charge conjugation changes electrons with positive energy and spin up on positrons
with positive energy and spin down.

4.6 Quantization

The Dirac equation can be obtained by using the variational principle, starting from the following
Lorentz invariant action6

S �
»

dx
� i

2

�
ψ̄γµBµψ � Bµψ̄γµψ

	
� mc

~
ψ̄ψ
�
� c

»
d~x dt ψ̄

�
iγµBµ � mc

~

	
ψ . (4.46)

We remind that in the action we have dx � cd~xdt. Here ψ and ψ̄ can be considered as independent
(spinor) variables. With such normalization of the action, the latter is assumed to be dimensionless,
the fermions have dimension r`�3{2s, where ` is the length. The Lagrangian density is therefore

L � c ψ̄
�
iγµBµ � mc

~

	
ψ .

Note that the quantity mc
~ is nothing else but the inverse the Compton wave length λc � ~

mc of the
Dirac field.

The canonical momentum is

π � δS

δ 9ψ
� iψ̄γ0 � iψ�t . (4.47)

As we see, the canonical momentum does not depend on the velocity 9ψ at all, and therefore the Dirac
Lagrangian falls in a category of singular dynamical systems. To obtain the proper Hamiltonian
description of the system one has to use the so-called Dirac bracket formalism. Here we use however
a simpler alternative approach based on the consideration of equations of motion. First we note that
the Hamiltonian can be obtained through the standard formula

H �
»

d~x
�
π 9ψ �L

� � 1

~

»
d~x
�
� i~ c ψ̄γiBiψ �mc2 ψ̄ψ

	
� 1

~

»
d~xψ:

�
cαip�i~Biq �mc2 βlooooooooooomooooooooooon

H

	
ψ ,

where we recall that H is the Hamiltonian operator of the first quantized theory. One can see that
rHs � rE{~s � r1{ts.

6The sign of the Lagrangian as well as an overall coefficient can be chosen arbitrarily. Since the Lagrangian involve
derivatives of ψ and ψ̄ linearly, the corresponding action cannot have neither maximum nor minimum. The condition
δS � 0 defines a stationary point but not an extremum of the integral.
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To establish the Poisson structure, we rewrite the Dirac equations in the form of the evolution
equations, which must be nothing else but the Hamiltonian equations of motion

Bψ
Bt � � i

~

�
cαip�i~Biq �mc2 β

	
ψ � tH,ψu ,

Bψ�
Bt � � i

~

�
cαi�pi~Biq �mc2 β

	
ψ� � tH,ψ�u .

(4.48)

These equations of motion follow from the Hamiltonian

H � 1

~

»
d~xψ:p~xqH p~xqψp~xq (4.49)

and the following Poisson bracket

tψip~xq, ψ�j p~x1qu � iδp3qp~x� ~x1qδij ,
tψip~xq, ψjp~x1qu � 0 ,

tψ�i p~xq, ψ�j p~x1qu � 0 .

(4.50)

where ψp~xq and ψ�i p~xq are considered as the usual classical (commuting) variables. Up to now our
considerations were purely classical. In particular, ψp~xq was treated as a classical four component
field satisfying the Dirac equations of motion. The reader might be very much confused by the
appearance of ~ in this classical equations of motion. Do not be confused! The Planck constant
is standing there merely as a parameter to provide the proper matching of dimensions of various
quantities entering the Dirac equation. Quantization of the Dirac field has not been performed so
far.

Now we are in a position to perform quantization of the Dirac field. The fundamental feature
of the Dirac field is that it is quantized by means of anti-commutator instead of commutator. This
is dictated by the Pauli-Lüders theorem on the relationship between spin and statistics and also
by the requirement by positivity of the second quantized Hamiltonian. Thus, our quantization
procedure will consist in replacing the classical Poisson brackets with quantum Poisson brackets
(this is as usual), while the quantum Poisson brackets will be realized as anti-commutators, rather
than commutators.

tψip~xq, ψ�j p~x1qu~ �
i

~
pψip~xqψ�j p~x1q � ψ�j p~x1qψip~xqq � iδp3qp~x� ~x1qδij ,

tψip~xq, ψjp~x1qu~ � i

~
pψip~xqψjp~x1q � ψjp~x1qψip~xqq � 0 ,

tψ�i p~xq, ψ�j p~x1qu~ �
i

~
pψ�i p~xqψ�j p~x1q � ψ�j p~x1qψ�i p~xqq � 0 .

(4.51)

From now on we reserve the notation t. , .u for the anti-commutator of fields! In terms of anti-
commutators the commutation relations between the components of the quantized Dirac field look
like

tψip~xq, ψ:jp~x1qu � ~ δp3qp~x� ~x1qδij
tψip~xq, ψjp~x1qu � 0

tψ:i p~xq, ψ:jp~x1qu � 0

(4.52)

Every component ψipxq is now understood as an operator-valued distribution, satisfying the anti-
commutation relations above, as well as the following conjugation rules

pλψq: � λ̄ψ: , λ P C ,

pψiψjq: � ψ:jψ
:
i ,

ψ:: � ψ .

(4.53)
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Recall that we obtained

ψpxq �
»

d~p

p2π~q3{2
� mc2
Eppq

	1{2 2̧

r�1

�
brppqur�ppqe�

i
~pµx

µ � d:rppqvr�ppqe
i
~pµx

µ
	
. (4.54)

Introduce the following anti-commutation relations

tbrp~pq, b:sp~p1qu � tdrp~pq, d:sp~p1qu � ~δrsδp~p� ~p1q ,
tbrp~pq, bsp~p1qu � tdrp~pq, dsp~p1qu � 0 ,

tbrp~pq, dsp~p1qu � tbrp~pq, d:sp~p1qu � tb:rp~pq, dsp~p1qu � 0 .

(4.55)

Compute the equal-time anti-commutator7

tψip~xq, ψ:jp~x1qu �
»

dpdp1

p2π~q3
mc2

pEppqEpp1qq1{2 � (4.56)

�
� 2̧

r,s�1

tbrp~pq, b:sp~p1qupur�ppqqipus�pp1qq�j e�
i
~ pp0�p10qx0� i

~ ppix
i�p1ixi

1 q �

�
2̧

r,s�1

td:rp~pq, dsp~p1qupvr�ppqqipvs�pp1qq�j e�
i
~ pp0�p10qx0� i

~ ppix
i�p1ixi

1 q
�
.

tψip~xq, ψ:jp~x1qu � ~
»

dp

p2π~q3
mc2

Eppq � (4.57)

�
� 2̧

r�1

pur�ppqqipus�ppqq�j e�
i
~ pipx

i�xi1 q �
2̧

r�1

pvr�ppqqipvr�ppqq�j e
i
~ pipx

i�xi1 q
�
.

From the relations (4.36) we find

pur�ppqqipus�ppqq�j � pur�ppqqipūs�ppqγ0qj � pΛ�ppqγ0qij �

�
Eppq1� cαipi �mc2β

	
ij

2mc2
,

pvr�ppqqipvs�ppqq�j � pvr�ppqqipv̄s�ppqγ0qj � �pΛ�ppqγ0qij �

�
Eppq1� cαipi �mc2β

	
ij

2mc2
.

(4.58)

Thus, we arrive at

tψip~xq, ψ:jp~x1qu � ~
»

dp

p2π~q3
mc2

Eppq �

�

�
��
�
Eppq1� cαipi �mc2β

	
ij

2mc2
e�

i
~ pipx

i�xi1 q �

�
Eppq1� cαipi �mc2β

	
ij

2mc2
e
i
~ pipx

i�xi1 q

�
�� .

Making in the second term the change of variables ~pÑ �~p, we obtain

tψip~xq, ψ:jp~x1qu � ~
»

dp

p2π~q3
mc2

Eppq
2Eppq
2mc2

e�
i
~ pipx

i�xi1 q �
»

dp

p2π~q3 e
� i

~ pipx
i�xi1 q δij � ~δp~x� ~x1qδij

Acting on ψpxq with the Hamiltonian H � cαip�i~Biq �mc2 β, we get

H ψpxq �
»

d~p

p2π~q3{2
� mc2
Eppq

	1{2
Eppq

2̧

r�1

�
brppqur�ppqe�

i
~ pµx

µ � d:rppqvr�ppqe
i
~ pµx

µ
	
.

7The time x0 � ct is taken equal for both ψpxq and ψ:pxq.

53



The for the Hamiltonian we get

H �
»

d~xψ:H ψ �
»

d~x

»
d~pd~p1

p2π~q3
mc2

pEppqEpp1qq1{2Epp
1q �

�
2̧

r�1

�
b:rppqpur�ppqq�i e

i
~pµx

µ � drppqpvr�ppqq�i e�
i
~pµx

µ
	
�

�
2̧

s�1

�
bspp1qpus�pp1qqie�

i
~p

1
µx
µ � d:spp1qpvs�pp1qqie

i
~p

1
µx
µ
	
.

Since this computation of one of the most important on the Dirac theory, we do it in a very detailed
manner. We have

H �
»

d~xψ:H ψ �
»

d~x

»
d~pd~p1

p2π~q3
mc2

pEppqEpp1qq1{2Epp
1q �

�
2̧

r,s�1

�
b:rppqbspp1q

�
ur:� ppqus�pp1q

	
e
i
~ ppµ�~p1µqxµ � b:rppqd:spp1q

�
ur:� ppqvs�pp1q

	
e
i
~ ppµ�~p1µqxµ

� drppqbspp1q
�
vr:� ppqus�pp1q

	
e�

i
~ ppµ�~p1µqxµ � drppqd:spp1q

�
vr:� ppqvs�pp1q

	
e�

i
~ ppµ�~p1µqxµ

�
.

Now we can take the integral over ~x which is easy, since it results into delta functions δp~p � ~p1q or
δp~p� ~p1q. After this we perform the integration over ~p1 and find

H � mc2
»

d~p
2̧

r,s�1

�
b:rppqbsppq

�
ur:� ppqus�ppq

	
� b:rppqd:sp�pq

�
ur:� ppqvs�p�pq

	
looooooooomooooooooon

�0

e2 i~p0x
0

�drppqbsp�pq
�
vr:� ppqus�p�pq

	
looooooooomooooooooon

�0

e�2 i~p0x
0 � drppqd:sppq

�
vr:� ppqvs�ppq

	�
.

Note that in the above formulae : applied to spinors u or v means the usual hermition conjugation.
Since

ur:� ppqus�ppq �
Eppq
mc2

δrs , vr:� ppqvs�ppq �
Eppq
mc2

δrs ,

we finally find

H �
»

d~pEppq
�
b:rppqbrppq � drppqd:rppq

	
. (4.59)

Now we can really see how the problem of negative energies is solved. Since tdrppq, d:spp1qu �
~δrsδp~p� ~p1q, we can bring the Hamiltonian to the normal ordered form

H �
»

d~pEppq
�
b:rppqbrppq � d:rppqdrppq � 2~δp0q

	
. (4.60)

The operators brppq and b:rppq are interpreted as annihilation and creation operators of an electron
(fermion) with momentum ~p. Analogously, drppq and d:rppq are interpreted as annihilation and
creation operators of a positron (anti-fermion) with momentum ~p. The infinite contribution to
the energy can be throwing away passing to the normal ordered expressions. Actually, such an
interpretation of the creation and annihilation operators comes from considering also the second
quantized momentum operator and the operator of an electric charge, which in the normal ordered
form are

~P �
»

d~p ~p
�
b:rppqbrppq � d:rppqdrppq

	
(4.61)
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and

Q �
»

d~p
�
b:rppqbrppq � d:rppqdrppq

	
. (4.62)

4.7 The Dirac propagator
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Chapter 5

Electromagnetic field

Ordinary quantum mechnics cannot give an
account of photons which constitute the prime
case of relativistic particles. Since photons have
the rest mass zero, and correspondingly travel in
the vacuum at the velocity, naturally, of light c it
is ruled out that a non-relativistic theory such as
ordinary quantum mechanics could give even an
approximate description.

Stanford Encyclopedia of Philosophy

5.1 Classical electromagnetic field

The classical theory of electromagnetism, which is the Maxwell theory, combines together three
fundamental and observed phenomena – electricity, magnetism and light. Photons1 are presented
here only in terms of electromagnetic waves which propagate in the vacuum with the speed of light.
The theory is relativistic from the very beginning, which is reflected by the covariance of the Maxwell
equations under Lorentz transformations. Quantization of the classical electromagnetic field must
reveal the particle nature of light.

As is known from the course on classical field theory, the Lagrangian formulation of the Maxwell
electromagnetic theory is based on the four-vector electromagnetic potential, which is an underlying
field (a Lorentz invariant 4-vector) with the components

Aµ �
�
ϕ pxq , ~A pxq

	
, Aµ � ηµνA

ν �
�
ϕ pxq ,� ~A pxq

	
. (5.1)

Here ϕpxq and ~Apxq are called the scalar and vector potentials, respectively. The relationship
between electric and magnetic fields and the corresponding components of the four-potential are

~E � �~∇ϕ� 1

c

B ~A
Bt and ~H � rot ~A . (5.2)

The the action for the classical electrodynamics (without sources) reads as2

S � � 1

4c

»
d4xFµνF

µν � �1

4

»
dtd3~xFµνF

µν ,

1The name photon has been coined by the chemist Gilbert N. Lewis in 1926.
2Normalization of the action �1{4c is written in the the Heaviside system of units; in Gaussian sytem of units it

would be �1{p16πq, as for instance in the Landau and Lifshitz 2nd volume “Classical Field Theory”.
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where Fµν is the electromagnetic tensor

Fµν � BµAν � BνAµ . (5.3)

In terms of electric and magnetic fields the tensor of the electromagnetic field is parametrized as
follows (here the index µ � 0, 1, 2, 3 enumerates the rows and the index ν � 0, 1, 2, 3 enumerates
columns)3

Fµν �

�
���

0 Ex Ey Ez
�Ex 0 �Hz Hy
�Ey Hz 0 �Hx
�Ez �Hy Hx 0

�
�� , Fµν � ηµσηνρFσρ �

�
���

0 �Ex �Ey �Ez
Ex 0 �Hz Hy
Ey Hz 0 �Hx
Ez �Hy Hx 0

�
�� ,

where we have defined the F0i components to be the electric fields and the Fij components are
related to the components of the magnetic fields. In what follows we set

~E � pEx, Ey, Ezq , ~H � pHx, Hy, Hzq , ~A � pAx, Ay, Azq � pA1, A2, A3q

For reader’s convenience we also present the relationship between the electromagnetic tensor and
its components via indices

Ei � F0i � F i0 � �F 0i, F ik � �εiklHl , Hi � �1

2
εiklF

kl .

In particular, we stress the relation

Hi � �1

2
εiklF

kl � �1

2
εiklFkl � �εiklBkAl � εiklBkAl � prot ~Aqi ,

that is indeed ~H � rot ~A.

The definition of the electromagnetic tensor (5.3) implies the so-called Bianchi identity

BλFµν � BνFλµ � BµFνλ � 0 (5.4)

and they are equivalent to

~∇ � ~H � 0 ,
1

c

B ~H
Bt � �~∇� ~E . (5.5)

In absence of sources equations of motion are

BµFµν � 0 (5.6)

and they are equivalent to

~∇ � ~E � 0 ,
1

c

B ~E
Bt �

~∇� ~H . (5.7)

3The conventions here are that of the the Landau and Lifshitz 2nd volume “Classical Field Theory”.
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Figure 5.1: The left figure represents the gauge orbits. The right figure shows two gauge fixings –
the first one J1 is complete and the second J2 is not complete.

5.2 Gauge symmetry

All the physical properties of the electromagnetic field as well as the properties of the charge coupled
to the electromagnetic field are determined not by Aµ, but rather by Fµν . The underlying reason
for this is that electrodynamics exhibits an important new type of symmetry4. To understand this
issue of symmetry, we may decide to change the vector potential in the following way

Aµ Ñ Aµ � Bµχ , (5.8)

which can be rewritten in a less abstract form of space and time components separately:

~AÑ ~A� ~∇χ and ϕÑ ϕ� 1

c

Bχ
Bt . (5.9)

These transformations are referred to as the gauge transformations. Let us see what effect they have
on the tensor of the electromagnetic field:

δFµν � Bµ pAν � Bνχq � Bν pAµ � Bµχq � Fµν � �BµBνχ� BνBµχ � 0 .

Thus, the Lagrangian as well as the action are invariant under gauge transformations. We know that
global symmetries which depend on constant space-time independent parameters lead to conservation
laws by the Noether theorem. In opposite, the local gauge symmetries do not lead to conservation
laws! A global symmetry takes a physical state and transform it to another physical state, while
two states related by a gauge symmetry have to be identified – they correspond to the one and the
same physical state. Because of gauge symmetry the Maxwell equations

BµFµ � 0 ùñ
�
ηµνBρBρ � BµBν

	
Aν � 0 (5.10)

do not have unique solution for all Aµ, because if Aµ solve the equations then Aµ � Bµα with

Bµα
���
t�t0

� 0 also do, simply because

�
ηµνBρBρ � BµBν

	
Bνα � 0 for any α .

In other words, since Fµν is the same for both Aµ and Aµ�Bµα, these configurations correspond
to the one and same physical state. Given Aµ the space obtained from Aµ by acting on it with
gauge transformations is called the gauge orbit of Aµ, see figure 5.1. Thus, the space of all Aµ is
foliated by the gauge orbits. All states belonging to the same orbit describe the same physics and

4This symmetry extends to many other physical theories besides electrodynamics.
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correspond to the same physical state. One can pick a representative from each gauge orbit – the
procedure known as a gauge fixing. Different representative configurations of a physical state are
called different gauges.

Another peculiarity of the electromagnetic Lagrangian, which is also related to the gauge sym-
metry, is that equations of motion for A0 are not dynamical, i.e. they do not involve time derivatives
of A0. Indeed,

BµFµ0 � 0 Ñ BipBiA0 � B0Aiq � ~∇2A0 � ~∇B
~A

Bt � 0 .

Thus5,

A0 � �~∇�2~∇B
~A

Bt �
»

d~x1
~∇ B ~A

Bt p~x1q
4π|~x� ~x1| . (5.11)

Thus, A0 is not independent – we do not need to specify it at t � t0 (initial time slice). Thus, the
number of independent degrees of freedom cannot be more than three.

Various gauge choices are possible. Below we discuss two of them.

Coulomb (radiation) gauge

~∇ � ~A � div ~A � 0 � BiAi . (5.12)

For any given Ãi one can always find a representative Ai in its gauge orbit which satisfies the
Coulomb gauge condition. Indeed,

Ai � Ãi � Biα , BiAi � 0 .

We have
BiAi � BiÃi � ~∇2α � 0 ,

that is

α � ~∇�2BiÃi � �
»

d~x1
~∇ � ~Ap~x1q
4π|~x� ~x1| .

From equation (5.11) we deduce that in the Coulomb gauge A0 � 0.

Thus any field configuration Ai can be decomposed into the transverse and longitudinal parts

Ai � AKi �A
||
i , (5.13)

where BiAKi � 0 and A
||
i � Biξ for some ξ. In the Coulomb gauge ξ � 0 and only transversal

components are present. They represent two physical degrees of freedom corresponding to two
possible polarizations of a photon. Obviously, the Coulomb gauge breaks Lorentz symmetry, but
this is the simplest gauge to use for quantizing the electromagnetic field.

Lorenz gauge

BµAµ � 0 . (5.14)

This is also an admissible gauge choice as

BµpÃµ � Bµαq � 0 Ñ BµBµα � �BµÃµ

and the last equation (the inhomogeneous wave equation) can also be solved for α. Obviously, the
Lorenz gauge does not break Lorentz invariance, but it is an incomplete gauge choice, as it does not
pick a unique representative in each gauge orbit, as two configurations Aµ and Aµ � Bµα are in the
same orbit and satisfy the Lorenz gauge as soon as α is chosen to satisfy BµBµα � 0.

5We assume that potentials vanish at infinity so that there is no non-trivial solution of the homogeneous Laplace
equation to add.
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5.3 Hamiltonian formulation of electrodynamics

To obtain the Hamiltonian formulation of classical electrodynamics (without sources), we start for
the Lagrangian for electromagnetic field6

L � �1

4

»
d~xFµνF

µν

and rewrite it in the so-called first order formalism. To do so, we first compute the canonical
momentum conjugate to Aµ. We have

pµpxq � δL

δ 9Aµpxq � �
»

d3y F ρνpyq
δpBρAνpyqq
δpBtAµpxqq � �1

c
F 0

µpxq � �1

c
F0µpxq .

We see that we have a primary constraint7

p0 � 0 ,

i.e. the momentum conjugate to A0 vanishes. This is a straightforward consequence of the fact
that the Lagrangian does not contain the time derivative of A0. In other words, the velocity for A0

is absent so that A0 is not a dynamical field! As to the other three components of the canonical
momentum, they simply coincide, up to the overall factor �1{c, with the electric field:

pipxq � �1

c
F0ipxq � �1

c
pB0Ai � BiA0q � �1

c
Ei .

This relation allows us to find the velocities 9Ai via the electric field8

9Ai � c pEi � BiA0q Ñ 9Ai � �c pEi � BiA0q .

Now we write the Lagrangian in the Hamiltonian form

L �
»

d3x pipxq 9Aipxqlooooooooomooooooooon
symplectic structure

�rest

or

rest �
»

d3x pipxq 9Aipxq � L �
»

d3x pipxq 9Aipxq � 1

4

»
d3x p�2F0iF0i � FijFijq .

The rest must be reexpressed via canonical coordinates and momenta (electric field), i.e. all the
velocities must be excluded in favor of the canonical momenta. We have

rest �
»

d3xEipEi � BiA0q � 1

4

»
d3x p�2E2

i � FijFijq .

We also notice that ~H � rot ~A which can be also written as

Hi � �1

2
εijkFjk .

Since we have
εijkεimn � δjmδkn � δjnδkm ,

6We we assume that the action is dimensionless, then rAµs � ?
c{`, rFµν s � ?

c{`2 and rLs � 1{t, where ` is the
length (meters) and t is time (seconds).

7Thus, we are dealing with a singular Lagrangian system.
8Be careful: B0Ai � 1

c
9Ai.
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we see that

H2
i �

1

4
εijkεimnFjkFmn � 1

2
FijFij .

Thus, we arrive at

rest � 1

2

»
d3x

�
E2
i �H2

i � 2A0BiEi
	
.

Thus, the original Lagrangian takes the following form

L � � 1

c

»
d3xEi 9A

ilooooooomooooooon
symplectic structure

� 1

2

»
d3x

�
E2
i �H2

i

	
looooooooooomooooooooooon

Hamiltonian

�
»

d3xA0BiEilooooooomooooooon
Constraint

.

Here

H � 1

2

»
d3x

�
E2
i �H2

i

	
is the Hamiltonian of the electromagnetic field. This is nothing else as the energy of the electromag-
netic field! The first term defines the Poisson bracket (recall that Ai � �Ai)

tEip~xq, Ajp~yqu � �c δijδp~x� ~yq , (5.15)

or

tEip~xq, Ajp~yqu � c δijδp~x� ~yq . (5.16)

All the other Poisson brackets vanish. As we see, the right hand side of the Poisson brackets is
perfectly compatible with the scaling rEs � ?

c{`2 and rAs � ?
c{`.

With these Poisson brackets and the Hamiltonian one can verify the satisfaction of the Hamilto-
nian equations of motion for ~E and ~H.

d ~E

dt
� tH, ~Eu � c ~∇� ~H ,

d ~H

dt
� tH, ~Hu � �c ~∇� ~E .

The last term in the Lagrangian contains A0 which plays the role of the Lagrangian multiplier.
Indeed, varying the Lagrangian with respect to A0 we find the following constraint:

Cpxq � BiEipxq � div ~E � 0 ,

which is nothing else as the Gauss law. As an exercise, one can check that

dC

dt
� tH, Cpxqu � 0 ,

that is the constraint is preserved in time. Also, one can easily see that

tCpxq, Cpyqu � 0.

Some comments are in order.
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• We can also verify that the Lagrangian (written in the Hamiltonian form) is invariant with respect to the gauge
transformations (see eq.(5.9))

Ai Ñ Ai � Biχ
A0 � ϕ Ñ A0 � 1

c
9χ.

Under the gauge transformations we find

δL � �1

c

»
d3xEiBi 9χ� 1

c

»
d3x 9χBiEi � �1

c

»
d3x Bi

�
Ei 9χ

�
.

Thus, the integrand is the total derivative and we obtain δL � 0.

• To get the equations of motion for Ai, it is not enough to use the Hamiltonian; one has to take into account
the constraint

dAipxq
dt

�
!

H�
»

d3y A0pyqBiEipyq, Aipxq
)
� �cEipxq � cBiA0pxq .

For equations of motion for Ei and Hi adding constraint to the Hamiltonian is possible but not necessary
– the constarint commutes with both Ei and Hi and, therefore, gives no contribution to the corresponding
equations of motion. The gauge A0 is called Hamiltonian, because it is in this gauge that equations of motion
for all remaining fields are obtained from the Hamiltonian H. This gauge is, however, is not complete – gauge
transformations generated by functions αp~xq which do not depend on time preserve the gauge choice A0 � 0.

5.4 Quantization in the Coulomb gauge

Notice that Cpxq is actually a generator of gauge transformations. Indeed, we define

C � �1

c

»
d~xαpxqBiEip~xq � 1

c

»
d~x BiαpxqEip~xq . (5.17)

Then we see that

tC,Aipxqu � Biα . (5.18)

Let us write a decomposition for the potential and an electric field into transverse and longitudinal
parts

Ai � AKi �A
||
i , Ei � EK

i � E
||
i (5.19)

or, in a more detailed fashion,

Ai � AKi � Biξ , Ei � EK
i � Biζ , (5.20)

where

BiAKi � 0 , BiEK
i � 0 . (5.21)

Decomposition (5.20) is easy to construct. We have

BiAi � ~∇2ξ Ñ ξ � ~∇�2BjAj .

Hence,

AKi � Ai � BiBj
~∇2

Aj �
�
δij � BiBj

~∇2

	
Aj .

The operator

PK
ij � δij � BiBj

~∇2
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is a projector on the transverse part of the vector Ai. Indeed,

PK
ikP

K
kj �

�
δik � BiBk

~∇2

	�
δkj � BkBj

~∇2

	
� δij � BiBj

~∇2
�
�

��
BiBj
~∇2

�
��

���BiBjBkBk
~∇4

� PK
ij .

Further, note that the field ~H depends on transverse degrees of freedom only

Hi � �εiklBkAl � �εiklBkAKl � εiklBkBlξlooomooon
�0

.

Now we take the Lagrangian and substitute there our decomposition (5.20)

L � �1

c

»
d3xEi 9A

iloooooooomoooooooon
symplectic structure

� 1

2

»
d3x

�
E2
i �H2

i

	
looooooooooomooooooooooon

Hamiltonian

�
»

d3xA0BiEilooooooomooooooon
Constraint

.

We will get

L � �1

c

»
d3x pEK

i � Biζqp 9AiK � Bi 9ξq �
1

2

»
d3x

�
pEK

i � Biζq2 �H2
i

	
�
»

d3xA0
~∇2ζ .

Integrating by parts and using the transversality conditions (5.21), we arrive at

L � � 1

c

»
d3x

�
EK
i

9AiK � ~∇2ζ 9ξ
	

loooooooooooooooomoooooooooooooooon
symplectic structure

� 1

2

»
d3x

�
pEK

i q2 � ζ ~∇2ζ �H2
i

	
loooooooooooooooooooomoooooooooooooooooooon

Hamiltonian

�
»

d3xA0
~∇2ζloooooomoooooon

Constraint

.

Thus, according to this structure of the Lagrangian, the pairs pEK
i , A

K
i q and p~∇2ζ, ξq represent

canonically conjugate variables. The Gauss law constraint is then ~∇2ζ, while the Coulomb gauge
means ξ � 0.9 As the result, the gauge-fixed Lagrangian involves only transverse degrees of freedom
and has the form

L � � 1

c

»
d3x

�
EK
i

9AiK
	

loooooooooomoooooooooon
symplectic structure

� 1

2

»
d3x

�
pEK

i q2 �H2
i

	
loooooooooooooomoooooooooooooon

Hamiltonian

.

The Poisson bracket is

tEK
i p~xq, AjKp~yqu � �c

�
δij � BiBj

~∇2



δp~x� ~yq , (5.22)

and it is perfectly compatible with the transversality conditions on EK
i and AKi .

Quantization can be now performed in a straightforward way, by replacing the Poisson brackets
with the quantum Poisson brackets giving

rEK
i p~xq, AjKp~yqs � i~c

�
δij � BiBj

~∇2



δp~x� ~yq . (5.23)

Expanding transverse potentials over plane waves and imposing the commutation relations above, we
can interpret, as in the Klein-Gordon theory, the expansion coefficients as creation and annihilation

9In the free theory one cannot really see the necessity to impose the gauge condition ξ � 0 because imposition of the
Gauss constraint alone leaves in the Lagrangian the physical degrees of freedom only. However, in the hamiltonian
setting one is allowed to exclude the canonically conjugate variables only by pairs. Moreover, in the interacting
theory, where the electromagnetic field interacts with the conserved matter (electron) current, imposition ξ � 0 is
really necessary, otherwise ξ will be a propagating degree of freedom.
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Figure 5.2: Unit polarization vectors of the photon field with momentum ~k and �~k.

operators. The one important feature of the Maxwell theory is that the corresponding quanta carry
an integer spin. An expansion over the plane waves has the form

~AKp~x, tq � c

p2πq3{2
»

d~k?
2ω

2̧

r�1

~εrp~kq
�
arp~kqe�iωt�i~k~x � ar:p~kqeiωt�i~k~x

	
. (5.24)

For a massless photon we have the dispersion relation k0 � ω
c � |~k|, where ω is a frequency and ~k

is a wave vector. Here we also introduce two three-dimensional vectors ~ε1p~kq and ~ε2p~kq which have

unit norm and are orthogonal to the vector ~k:

~εrp~kq � ~k � 0 . (5.25)

The last condition guarantees that ~∇ � ~k � 0. It is also convenient to chose these vectors to be
orthogonal to each other for any ~k

~εrp~kq � ~εsp~kq � δrs . (5.26)

Two polarization vectors ~εr,sp~kq describe two physical polarization of the photon and they satisfy
the following completeness condition

2̧

r�1

εirp~kqεjrp~kq � δij � kikj

|~k|2
. (5.27)

We note that the explicit polarization vectors can be for instance chosen as follows

~ε1p~kq �

�
���

0

� k3?
pk2q2�pk3q2
k2?

pk2q2�pk3q2

�
�� , ~ε2p~kq � 1

|~k|

�
���
apk2q2 � pk3q2
� k1k2?

pk2q2�pk3q2
� k1k3?

pk2q2�pk3q2

�
�� . (5.28)

The vectors are chosen such as ~ε1 reverse its orientation, while ~ε2 stays the same as ~k Ñ �~k, see
figure 5.2. This implies in particular that

~εrp~kq � ~εsp�~kq � p�1qrδrs . (5.29)

Since Ei � � 1
c
9Ai, we find an analogous expansion for the electric field has the form

~EKp~x, tq � i

p2πq3{2
»

d~k

c
ω

2

2̧

r�1

~εrp~kq
�
arp~kqe�iωt�i~k~x � ar:p~kqeiωt�i~k~x

	
. (5.30)
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Such an expansion of the transverse potential and the electric field together with their commutators
imply the following commutators for the expansion coefficients

rarp~kq, as:p~k1qs � ~ δrsδp~k � ~k1q , (5.31)

rarp~kq, asp~k1qs � rar:p~kq, as:p~k1qs � 0 . (5.32)

Thus, the expansion coefficients acquire the meaning of the creation and annihilation operators cor-
responding to the two possible polarizations of the photon. It remains to compute the Hamiltonian.
Fist we find the contribution of the magnetic field. We have»

d~xH2
i �

»
d~x
�
BkAlKBkAlK � BkAlKBlAkK

	
�
»

d~x BkAlKBkAlK ,

since the second term in the integrand vanishes upon integrating by parts. With the help of the
formulae (5.26) and (5.29) we then find

:

»
d~xH2

i :� 1

2

»
d~k

c2|~k|2
ω

2̧

r�1

�
� arp~kqarp�~kq � 2ar:p~kqarp~kq � ar:p~kqar:p~kq

�
.

Computation of the contribution of the electric field is elementary

:

»
d~x pEK

i q2 :� 1

2

»
d~k ω

2̧

r�1

�
arp~kqarp�~kq � 2ar:p~kqarp~kq � ar:p~kqar:p~kq

�
.

Adding these expressions up and recalling that ω � c|~k|, we finally arrive at

H �
»

d~k ωp~kq
2̧

r�1

ar:p~kqarp~kq � c

»
d~k

2̧

r�1

|~k| ar:p~kqarp~kq . (5.33)

This is the Hamiltonian of the electromagnetic field in the Coulomb gauge written in the normal-
ordered form via creation and annihilation operators. Analogously one can derive the operator of
total momentum

~P �
»

d~x : ~EK � ~H :� c

»
d~k

2̧

r�1

~k ar:p~kqarp~kq . (5.34)

Some comments are in order.

• Although we constructed the quantum theory of the free electromagnetic field in the Fock space, we performed
the quantization only once (that is we do not need the second quantization). This makes a difference with the
Klein-Gordon and Dirac fields, both involving ~ already in the first quantized theory, which are attempted to
be treated as the Schrödinger equation for a single particle. The Maxwell equations do not involve ~ at all –
they are truly classical fields.

• It is clear from considering the physical Coulomb gauge that the electromagnetic field carries only two degrees
of freedom – the field A0 � 0 and Ai fluctuate only in the two-dimensional plane which is orthogonal to the
direction of motion, giving rise to two polarizations of a photon.

Make a con-
nection to
the classi-
cal theory of
polarized light.

• We point out that in the formulae (5.33) and p5.34q, ~k is not the particle momentum, but rather the wave
vector. The particle energy (dispersion) E is related to the frequency, and the wave number is related to the
particle momentum ~p by the Planck-Einstein-de Broglie formulae

E � ~ω , ~p � ~~k ,
which are valid for both massive particles and light.

• In the Coulomb gauge we have only physical degrees of freedom but the Lorentz invariance is not manifest.
One can nevertheless show that the theory is Lorentz invariant by explicitly constructing the generators of the
Lorentz algebra in terms of arp~kq and ar:p~kq and checking that they indeed form the Lorentz algebra. More
severe problems appear in the interacting theory, in particular, in the action there appears a term which is
non-local in space. These complications are avoided in the Lorentz gauge. However, in the Lorentz gauge one
has unphysical excitations A0 and A|| which has to be quantized but should not change the physical content
of the theory. One of the modern ways is to quantize the theory with constraints is to use the so-called
Becchi-Rouet-Stora-Tyutin (BRST) quantization.

65



Figure 5.3: The electromagnetic field carries two physical degrees of freedom – the potentials fluc-
tuate in the two-dimensional plane which is orthogonal to the momentum.

5.5 Spin of a photon

Since the action of the electromagnetic field is invariant under Lorentz transformations, then in ac-
cord with the Noether theorem, there must be corresponding conserved charges forming the Lorentz
algebra. In the case of the electromagnetic field the rotations of the three-dimensional space are
represented by

Λij �
»

d~x
�

: 9Ak
�
xi

B
Bxj � xj

B
Bxi

	
Ak :loooooooooooooooomoooooooooooooooon

orbital part

� : p 9AiAj � 9AjAiq :loooooooooomoooooooooon
spin part

�
. (5.35)

For the electromagnetic field the spin part

Sij �
»

d~x : p 9AiAj � 9AjAiq :

is preserved by itself because

dSij

dt
�
»

d~x : p :AiAj � :AjAiq :� c2
»

d~x : pB2
kA

iAj � B2
kA

jAiq :� 0 , (5.36)

where we have used the fact that Ai solves the wave equation lAi � 0 and, in the last step, the
integration by parts. In the Coulomb gauge we compute

Si � 1

2c2
εijkS

jk � 1

c2

»
d~x : εijk 9AKjAKk : .

The careful computation of this quantity gives

Si � � i
2

»
d~k
�
εimnε

m
r p~kqεns p�~kq arp~kqasp�~kqe�2iωt � εimnε

m
r p~kqεns p~kq as:p~kqarp~kq

� εimnε
m
r p~kqεns p~kq ar:p~kqasp~kq � εimnε

m
r p~kqεns p�~kq ar:p~kqas:p�~kqe2iωt

�
.

Now, with the help of the following identities

εimnε
m
r p~kqεns p~kq � ki

|~k|
εrs , εimnε

m
r p~kqεns p�~kq � ki

|~k|
p1 � δrsq ,
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Figure 5.4: The left picture represents a right-polarized photon with the helicity +1, while in the
right picture a photon is left-polarized with the helicity �1.

it is easy to find

Si � i

»
d~k

ki

|~k|
�
a1:p~kqa2p~kq � a2:p~kqa1p~kq

	
. (5.37)

With this expression at hand, one can very by direct computation that rH, Sis � 0, that is Si are
indeed the conserved quantities for any i � 1, 2, 3. Obviously, the expression for Si can be written
in the form

~S � i

»
d~k~ε3p~kq

�
a1:p~kqa2p~kq � a2:p~kqa1p~kq

	
, (5.38)

where we have introduced the third vector ~ε3p~kq with components

εi3 �
ki

|~k|
, (5.39)

which is orthogonal to polarization vectors ~ε1p~kq and ~ε2p~kq. Thus, as is clear from this momentum
space expression spin always aligns the direction of motion of a photon. Consider now one-photon
states

ar:p~kq|0y
and act on it with ~S. We will get

~S a1:p~kq|0y � �i~~ε3p~kqa2:p~kq|0y ,
~S a2:p~kq|0y � i~~ε3p~kqa1:p~kq|0y .

Omitting the notation of the vacuum this can be written in the matrix form

~S

�
a1:p~kq
a2:p~kq

�
� ~~ε3p~kq

�
0 �i
i 0



loooooomoooooon

Pauli σ2

�
a1:p~kq
a2:p~kq

�
. (5.40)

The matrix σ2 has eigenvalues �1 and

Q �
�

1 �i
1 i



Ñ Qσ2Q�1 � diagp1,�1q . (5.41)

Therefore, making the linear combinations

a:R �
1?
2
pa1: � ia2:q ,

a:L �
1?
2
pa1: � ia2:q ,
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which describe the left and right-polarised waves, we have

rS , a:Rs � ~ a:R , rS , a:Ls � �~ a:L .

where S � ~S � ~ε3p~kq is the helicity operator. Hence, in units of ~ the projection of spin on the
direction of motion is +1 for the right-polarized photon, and it is -1 for the left-polarized one.

Finally, it is not difficult to find the Feynman propagator in the Coulomb gauge

DK
Fijpx� x1q � x0|AipxqAjpx1q|0y ,

which can be explicitly written as the four-dimensional integral in Fourier space

DK
Fijpx� x1q �

»
d4k

p2πq4
e�ikx

k2 � iε

�
δij � kikj

|~k|2

�
. (5.42)

Obviously this propagator satisfies the transversality condition.
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Chapter 6

Path integral in quantum
mechanics

One cannot fail to observe that Feynman’s
principle in particular – and there is no hyperbole
– expresses the laws of quantum mechanics in an
exemplary neat and elegant manner,
notwithstanding the fact that it employs
somewhat unconventional mathematics.

Yourgrau and Mandelstam

6.1 Gaussian Integrals

Gaussian integrals play an important role in many areas – in probability theory, in quantum mechan-
ics, in quantum field theory, in the theory of phase transitions in statistical physics. Thus, before
introducing the functional integral, in this chapter we recall several useful mathematical results
concerning gaussian integrals and also properties of gaussian averages.

Consider a positive-definite measure ρpx1, x2, . . . , xnq defined on Rn and properly normalized.
The mean value of any function F px1, x2, . . . , xnq is defined as

! F "�
»

dnxF p~xqρp~xq . (6.1)

Consider now a gaussian integral

ZpAq �
»

dnx exp
�
� 1

2

ņ

i,j�1

xiAijxj

	
. (6.2)

This integral is convergent provided the matrix A is a symmetric complex matrix, the real part of
which is non-negative (that means that all eigenvalues of RepAq are non-negative) and none of the
eigenvalues of ai is equal to zero:

RepAq ¥ 0 , ai � 0.

Under this conditions one can prove that1

ZpAq �
»

dnx exp
�
� 1

2

ņ

i,j�1

xiAijxj

	
� p2πqn{2pdetAq�1{2 . (6.3)

1If a matrix is complex, one has to pay attention to the square root and an overall sign.
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Let us recall the prove for real positive matrices. One-dimensional gaussian integral of the general
form pa ¡ 0q can be easily computed

» �8
�8

dx e�
1
2ax

2�bx �
b

2π
a e

b2

2a .

Any real symmetric matrix can be diagonalized by an orthogonal transformation

A � ODOt ,

where O is orthogonal OtO � 1 and D � aiδij is diagonal. We make a change of variables xi � Oijyj ,
so that

xiAijxj � ykOikAijOjmym � ykpOtAOqkmym � aky
2
k .

The Jacobian J � |detpOq| � 1. Thus, the integral gets factorized

ZpAq �
n¹
i�1

»
dyi e

�aiy2
i � p2πqn{2pa1a2 . . . anq�1{2 � p2πqn{2pdetAq�1{2 .

It is also easy to compute the gaussian integral of a general form

ZpA, bq �
»

dnx exp
�
� 1

2

ņ

i,j�1

xiAijxj �
ņ

i�1

bixi

	
. (6.4)

To compute this integral one has to find the minimum of the quadratic form

B
Bxk

�
1

2

ņ

i,j�1

xiAijxj �
ņ

i�1

bixi

�
�

ņ

j�1

Akjxj � bk � 0

or with the help of the inverse matrix b � A�1x. Finally we make a change of variables

xi � pA�1bqi � yi

and the integral takes the form

ZpA, bq � exp
�

1
2

ņ

i,j�1

bipA�1qijbj
� »

dny exp
�
� 1

2

ņ

i,j�1

yiAijyj

	
. (6.5)

This finally gives

ZpA, bq � p2πqn{2pdetAq�1{2 exp
�

1
2

ņ

i,j�1

bipA�1qijbj
�

(6.6)

The characteristic property of a gaussian integral is that it remains gaussian after integrating over
one variable. This structural rigidity explains a rigidity of gaussian probability distributions.

6.2 Path integral in quantum mechanics

We start with the the Schrödinder equation – the main equation of quantum mechanics

i~
dψptq
dt

� Hψptq , (6.7)
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where ψptq is a vector in a Hilbert space. Introduce a concept of the evolution operator. The
evolution operator Upt2, t1q transforms the wave function ψpt1q in the Schrödinger representation
into the wave function ψpt2q:

ψpt2q � Upt2, t1qψpt1q � e�
i
~Hpt2�t1qψpt1q , (6.8)

where H is a Schödinger operator. This formula can be easily understood. The operator

e
i
~Ht1ψpt1q � e

i
~Ht1e�

i
~Ht1ψ � ψ (6.9)

brings the wave to the Heisenberg (time-independent) representation, while e�
i
~Ht2ψ creates again

the Schrödinger wave function but at the moment t2. Obviously, Upt2, t1q satisfies Schrödinger
equation with respect to t2. As usual the wave function in coordinate representation is obtained as
ψpq1, tq � xq1|ψptqy. Thus, eq.(6.9) leads to

xq2|ψpt2qy �
» 8
�8

dq1 xq2|e� i
~ pt2�t1qH |q1yxq1|ψpt1qy,

or

ψpq2, t2q �
» 8
�8

dq1 xq2|e� i
~ pt2�t1qH |q1yψpq1, t1q . (6.10)

This is an integral form of the Schrödinger equation and its kernel is the matrix element of the
evolution operator, which we denote as

W pq2, t1; q1, t1q � xq2|e� i
~ pt2�t1qH |q1y .

This kernel obeys two properties

• It is markovian »
dq2W pq3, t3; q2, t2qW pq2, t2; q1, t1q �W pq3, t3, q1, t1q .

• It obeys the following normalization W pq2, t; q1, tq � δpq2 � q1q.

Now we derive a representation for the matrix element of the evolution kernel in terms of the so-
called path integral. To do this, we split the time interval pt0, tN q into N interva;s ti�1 � ti � ∆, so
that tN � t0 � N∆, and write

W pqN , tN ; q0, t0q �
»

dqN�1 . . .

»
dq1W pqN , tN ; qN�1, tN�1q . . .W pq1, t1; q0, t0q .

We have

W pqi�1, ti�1; qi, tiq � xqi�1|e� i
~ ∆|qiy �

»
dpi xqi�1|piyxpi|e� i

~ ∆|qiy �

�
»

dpi xqi�1|piy
�
xpi|qiy � i

~
∆xpi|H|qiy � . . .

	
.

If the Hamiltonian HpP,Qq ordered such that all P ’s and on the left from Q’s then

xpi|H|qiy � e�
i
~piqi?
2π~

Hppi, qiq .
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Thus,

W pqi�1, ti�1; qi, tiq � 1

2π~

»
dpi e

i
~ pqi�1�qiqpi

�
1� i

~
∆Hppi, qiq � . . .

	
�

� 1

2π~

»
dpi e

i
~ ∆

�
pqi�1�qiqpi

∆ �Hppi,qiq
�
.

For the case of a particle moving in a potential V pQq we have

H � p2

2m
� V pQq

and the integral over pi can be computed explicitly, because it is gaussian. Indeed, we have

pqi�1 � qiqpi
∆

� p2
i

2m
� � 1

2m

�
pi � qi�1 � qi

∆
m
	2

� m

2

�qi�1 � qi
∆

	2

.

Therefore,

W pqi�1, ti�1; qi, tiq � e
i
~ ∆

�
m
2

�
qi�1�qi

∆

�2
�V pqiq

�
2π~

»
dpi e

�i ∆
2m~p

2
i .

The remaining integral over pi is a well–known Fresnel integral» 8
�8

e�iap
2

dp �
c
π

a
e�i

π
4 , a ¡ 0 . (6.11)

Thus, we end up with

W pqi�1, ti�1; qi, tiq �
� m

2πi~∆

	 1
2
e
i
~ ∆

�
m
2

�
qi�1�qi

∆

�2
�V pqiq

�
.

In this way we reduced our original matrix element to the following N � 1 fold integral

W pqN , tN ; q0, t0q �
� m

2πi~∆

	N
2
»

dqN�1 . . .

»
dq1 e

i
~ ∆

°N�1
i�0

�
m
2

�
qi�1�qi

∆

�2
�V pqiq

�
.

Now we take the limit N Ñ8, ∆ Ñ 0 such that N∆ � tN � t0 remains fixed. Introducing notation
for the limiting measure

Dq � lim
NÑ8

� m

2πi~∆

	N
2

dq1 . . . dqN�1 � N rN � 1sdq1 . . . dqN�1 , (6.12)

we arrive at the path integral representation for the matrix element of the evolution operator

W pqN , tN ; q0, t0q �
»
qpt0q�q0
qptN q�qN

Dq e
i
~Srqptqs .

Normalization factor in the measure involving N �1 integrals was defined as N rN �1s, so that with
N integrations we would get

N rN s �
� m

2πi~∆

	N�1
2
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6.3 Classical limit

Path integral assumes summation over all trajectories of a particles whether or not they solve the
classical equations of motion. However, in the limit ~Ñ 0 one expects one expects solutions of the
classical equations of motion to provide a dominant contribution into the path integral. Consider

W �
»
Dq e

i
~Srqptqs .

As ~ Ñ 0 the integrand is rapidly oscillating and two neighboring half-waves of say cosp 1
~Sq en-

compass almost the same but opposite in sign areas. Sum of these areas is small and, as a result,
the whole integral is small, c.f. figure 9.1. However, around a stationary point of the action, i.e. a
trajectory which delivers the extremum δSrqptqs � 0, the functional exp

�
i
~Srqptqs

�
does not oscillate

providing thereby a dominant contribution. In general a method of computing the asymptotics of
W in the limit ~ Ñ 0 is called a a method of stationary phase; we refer the reader to the appendix
9.1 for the brief account of this method.

Let us expand the action around a classical trajectory

Srqptqs � Srq0ptqs � 1

2

»
dt11dt12

B2Srqptqs
Bqpt11qBqpt12q

���
q�q0

pqpt11q � q0pt11qqpqpt12q � q0pt12qq � . . .

It is conventional to change the variables qptq Ñ q0ptq �
?
~ qptq, so that2

W � e
i
~Srq0ptqs

»
Dq̃ e

i
2

³
dt11dt12

B2Srqptqs

Bqpt11qBqpt
1
2q

���
q�q0

qpt11qqpt12q � . . . (6.13)

Here integration runs over trajectories qptq such that qpt1,2q � 0. The approximation of W where
all the higher order terms in ~ are suppressed is called a semi-classical (or WKB) approximation.
Using discretization approach the pass integral

»
Dq̃ e

i
2

³
dt11dt12

B2Srqptqs

Bqpt11qBqpt
1
2q

���
q�q0

qpt11qqpt12q � det

� B2Srqptqs
Bqpt11qBqpt12q

���
q�q0

��1{2

can be formally understood as a determinant of the corresponding operator. There exists several
ways to compute this object. Below we demonstrate how to compute it for a free particle by passing
back to its discretized version.

Consider the action for a free particle Srqptqs � ³ dt m 9q2

2 . Compute the first variational derivative

δS �
»

dtm 9qδ 9q � �
»

dtm:qptqδqptq ,

that is
δS

δqptq � �m:qptq .

To compute the second variational derivative we write

δS

δqptq � �m
»

dt1 :qpt1qδpt1 � tq � �m
»

dt1 qpt1qδ2pt1 � tq .

Thus,

δ
δS

δqptq � �m
»

dt1 δqpt1qδ2pt1 � tq

2The measure Dq̃ arises from Dq upon rescaling q Ñ ?
~q.
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and, therefore,
δ2S

δqptqδqpt1q � �mδ2pt1 � tq .

Now we can compute

»
Dq̃ e

i
2

³
dt11dt12

B2Srqptqs

Bqpt11qBqpt
1
2q

���
q�q0

qpt11qqpt12q �
»
Dq̃ ei

³t2
t1

dtm 9q2

2 .

The result must depend on the times t1 and t2 only! We compute this integral by passing to the
discrete version»

Dq̃ ei
³t2
t1

dtm 9q2

2 � lim
NÑ8

N rN s ~N{2
»

dq1 . . .

»
dqN exp

� im
2∆

N�1̧

i�0

pqi�1 � qiq2
	
. (6.14)

Here qi � qptiq and the initial and final conditions are q0 � qpt1q � 0 � qpt2q � qN�1. Then

N�1̧

i�0

pqi�1 � qiq2 �
Ņ

i,j�1

qiAijqj ,

where the matrix A is depicted on figure 6.3. Hence, once again we arrive at a factorizable expression

»
Dq ei

³t2
t1

dtm 9q2

2 � lim
NÑ8

N rN s ~N{2
»

dq1 . . .

»
dqN exp

� im
2∆

Ņ

i,j�1

qiAijqj

	
�

� lim
NÑ8

N rN s ~N{2
»

dq1 . . .

»
dqN exp

� im
2∆

Ņ

i

aiq
2
i

	
. (6.15)

Every individual integral here does converge, and is, in fact, nothing else but again the complete
Fresnel integral » 8

�8
dqi exp

� i
2

m

∆
aiq

2
i

	
� 2

c
π∆

2mai
e
iπ
4 �

c
2πi∆

mai
. (6.16)

It is easy to find that detA1 � 2, detA2 � 3, which leads to the natural assumption that
detAN � N � 1. By expanding the determinat of AN over last column one gets recurrence relation

detAN � 2 detAN�1 � detAN�2 .

which is obviously satisfied by detAN � N � 1. This leads to the following result»
Dq̃ ei

³t2
t1

dtm 9q2

2 � N
�2πi~∆

m

	N{2 1?
N � 1

. (6.17)

Taking into account that

N rN s �
� m

2πi~∆

	pN�1q{2
,

we then get»
Dq̃ ei

³t2
t1

dtm 9q2

2 � lim
NÑ8

� m

2πi~∆

	pN�1q{2�2πi~∆

m

	N{2 1?
N � 1

�
c

m

2πi~∆pN � 1q .

Restoring all the details the final result reads

W pq2, t2; q1, t1q �
c

m

2πi~pt2 � t1q exp
� i
~
m

2

pq2 � q1q2
pt2 � t1q

�
. (6.18)
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Figure 6.1: The N �N matrix A arising in evaluation the path integral for a free particle. Matrix
A is positive definite, . i.e. all its eigenvalues are positive.

For free particle this result is exact, because semi-classical expansion stops at the second functional
derivative; all higher functional derivatives of S are identically zero. One can easily verify by explicit
calculation that (6.18) solves the Schödinger equation

i~
B
Bt2W pq2, t2; q1, t1q � � ~2

2m

B2

Bq2
2

W pq2, t2; q1, t1q .

Note that the original definition (6.8) of the evolution operator is valid for t2 ¥ t1 only, which
therefore also holds for the kernel W pq2, t2; q1, t1q. It is convenient to require that W vanishes for
t2   t1. This boundary condition (in time) can be incorporated by considering

Gpq2, t2; q1, t1q � θpt2 � t1qW pq2, t2; q1, t1q (6.19)

Here θptq is the so-called step function defined as

θptq �
"

1 if t ¡ 0
0 if t   0

(6.20)

and it has a property that dθptq
dt � δptq. From definition of G we deduce that it obeys the following

equation

�
i~

B
Bt2 �Hpp2, q2q

	
Gpq2, t2; q1, t1q � i~δpt2 � t1qδpq2 � q1q , (6.21)

i.e. Gpq2, t2; q1, t1q is nothing else but Green’s function which solves the Cauchy problem for the
Schrödinger equation. By construction this is the so-called retarded Green’s function.

Of course, for free particle there is a much easier way to get the same result.

xq2|e�
i
~ pt2�t1qH |q1y �

»
dp xq2|e�

i
~ pt2�t1qH |pyxp|q1y �

»
dp xq2|pyxp|q1ye�

i
~ pt2�t1q

p2

2m �

� 1

2π~

»
dp e

i
~ pq2�q1qp�

i
~ pt2�t1q

p2

2m .

The last integral is gaussian and to compute it, we complete the p-dependent term in the exponential to the complete square,
getting thereby

xq2|e�
i
~ pt2�t1qH |q1y � 1

2π~
e
i
~
m
2
pq2�q1q

2

pt2�t1q

»
dp e

� i
~
t2�t1

2m

�
p�m

q2�q1
t2�t1

	2

�

� 1

2π~

b
2m~π
ipt2�t1q

e
i
~
m
2
pq2�q1q

2

pt2�t1q �
b

m
2πi~pt2�t1q

e
i
~
m
2
pq2�q1q

2

pt2�t1q .
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Chapter 7

Functional methods in QFT

The act of creation may be represented as a
source, and that of destruction by a sink, which is,
in a manner of speaking, a source.... The vacuum
at t � �8 evolves into the vacuum at t � �8, via
the creation, interaction and destruction of a
particle, through the agency of a source. We want
to know the vacuum-to-vacuum transition
amplitude in the presence of a source. This
formulation, using the language of sources, is due
to Schwinger (1965).

Lewis Ryder
Quantum Field Theory

7.1 Generating functional of Green’s functions

Consider a free scalar field φpxq with the action (the God-given units are in here!)

Srφpxqs �
»

d4x
�

1
2BµφpxqBµφpxq � 1

2m
2φ2pxq

	
. (7.1)

Suppose the scalar field φpxq has a source Jpxq. Then we can define the so-called vacuum-to-vacuum
transition amplitude in the presence of the source J

Z0rJs �
»

Dφ exp

"
i

»
d4x

�
L pφq � Jpxqφpxq � i

2
εφ2
�*

(7.2)

The ε-dependent factor with εÑ 0� provides a convergence of the integral for large φ.

Integrating by parts in the Lagrangian we can rewrite the quantity above as

Z0rJs �
»

Dφ exp

"
�i
»

d4x
�

1
2φpl�m2 � iεqφ� Jφ

�*
. (7.3)

Let us make a shift φÑ φ� φ0. Then we get»
d4x

�
1
2φpl�m2 � iεqφ� Jφ

�
Ñ»

d4x
�

1
2φpl�m2 � iεqφ� 1

2φ0pl�m2 � iεqφ0 � φpl�m2 � iεqφ0 � Jφ� Jφ0

�
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and chose φ0 to satisfy
pl�m2 � iεqφ0 � J .

The path integral reduces then

Z0rJs � e
i
2

³
d4xJφ0

»
Dφ exp

"
� i

2

»
d4xφpl�m2 � iεqφ

*
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

N

� Ne
i
2

³
d4xJφ0 , (7.4)

where N is a normalization prefactor. Since Feynman propagator satisfy the equation

pl�m2 � iεqDF pxq � �iδpxq ,

it can be used to write a solution for φ0

φ0pxq � i

»
dy DF px� yqJpyq . (7.5)

Hence,

Z0pJq � exp
�
� 1

2

»
dxdy JpxqDF px� yqJpyq

�
. (7.6)

where we have chosen normalization in such a way that Z0p0q � 1. We see that the two-point
correlation function, which coincides with the Feynman propagator, can be obtained as

DF px1 � x2q � x0 | T pφpx1qφpx2qq | 0y � 1

i2
δ

δJpx1q
δ

δJpx2qZ0rJs
���
J�0

.

Similarly, we define the n-point correlation function as

Gpx1, x2, . . . , xnq � x0 | T pφpx1qφpx2q . . . φpxnqq | 0y � 1

in
δ

δJpx1q
δ

δJpx2q . . .
δ

δJpxnqZ0rJs
���
J�0

.

One can see that all the Green’s functions with the odd number of points vanish in the theory of free
Klein-Gordon field. The even-point functions are non-trivial, for instance the four-point function is

Gpx1, x2, x3, x4q � DF px1 � x2qDF px3 � x4q �DF px1 � x3qDF px2 � x4q �DF px1 � x4qDF px2 � x3q .

It can be easily visualized as a sum of Feynman diagrams. Each diagram can be though of as
describing a process where particles created at two space-time points, each propagates to one of the
other points, and then they are annihilated. In general we have

Gpx1, x2, . . . xnq �
¸

perm

Gpxp1 , xp2q . . . Gpxp2n�1 , xp2nq .

This result is known as Wick’s theorem and it can be alternatively derived by using the field com-
mutation relations.

We finish this section by explicitly mentioning that Z0pJq is nothing else as the generating
functional for Green’s functions and it can be represented in the form

Z0pJq �
8̧

n�0

in

n!

»
dx1 . . . dxn Jpx1q . . . JpxnqGpx1, x2, . . . , xnq .
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Figure 7.1: Feynman diagrams contributing to the four-point function in the free Klein-Gordon
theory.

7.2 Generating functional for interacting fields

Let us now include in the action a potential term V pφq which is supposed to be quadratic in the
field φ:

Srφpxqs �
»

d4x
�

1
2BµφpxqBµφpxq � 1

2m
2φ2pxq � V pφpxqq

	
. (7.7)

The normalized generating functional is

ZrJs �
³
Dφ exp

�
iS � i

³
Jφdx

	
³
Dφ eiS

. (7.8)

Obviously, we can write»
Dφ exp

�
iS � i

»
Jφdx

	
�

»
Dφ exp

"
�i
»

dxV pφpxqq
*

exp

"
iS0 � i

»
dxJφ

*
�

�
»

Dφ exp

"
�i
»

dxV
�1

i

δ

δJpxq
	*

exp

"
iS0 � i

»
dxJφ

*
�

� exp

"
�i
»

dxV
�1

i

δ

δJpxq
	*»

Dφ exp

"
iS0 � i

»
dxJφ

*
�

� N exp

�
�i
»

dxV
�1

i

δ

δJpxq
	�

exp

�
�1

2

»
dxdy JpxqDF px� yqJpyq

�
.

Analogously,»
Dφ eiS �

»
Dφ exp

�
iS � i

»
Jφdx

	���
J�0

�

� N exp

�
�i
»

dxV
�1

i

δ

δJpxq
	�

exp

�
�1

2

»
dxdy JpxqDF px� yqJpyq

�
J�0

.

Thus, for the generating functional the following formula is valid

ZrJs �
exp

�
�i ³ dz V

�
1
i

δ
δJpzq

	�
exp

�� 1
2

³
dxdy JpxqDF px� yqJpyq�

exp
�
�i ³ dz V

�
1
i

δ
δJpzq

	�
exp

�� 1
2

³
dxdy JpxqDF px� yqJpyq�

J�0

(7.9)

The last formula should be understood in the sense of perturbation theory.

To make further progress, we have to specify the potential. Let us consider an example of the
simplest interacting theory in four dimensions where

V pφq � g

4!
φ4
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With this choice of the potential we have

ZrJs �
exp

�
�i g4!

³
dz δ4

δJpzq4
�

exp
�� 1

2

³
dxdy JpxqDF px� yqJpyq�

exp
�
�i g4!

³
dz δ4

δJpzq4
�

exp
�� 1

2

³
dxdy JpxqDF px� yqJpyq�

J�0

. (7.10)

To only way to treat ZrJs is to expand the interaction term in the power series in g. Taking just
the numerator of ZrJs and expanding V up to the first order in g, we will get�

1� i
g

4!

»
dz

δ4

δJpzq4 �Opg
2q
�

exp

�
�1

2

»
dxdy JpxqDF px� yqJpyq

�
(7.11)

Below we evaluate the action of four derivatives on e∆ � exp
�� 1

2

³
dxdy JpxqDF px� yqJpyq� step

by step.

1) Action of the first derivative

δ

δJpzqe
∆ � �

�»
DF pz � yqJpyq dy

�
e∆ .

2) Action of the second derivative

δ2

δJpzq2 e
∆ � �DF p0q e∆ �

�»
DF pz � yqJpyqdy

�2

e∆ .

3) Action of the third derivative

δ3

δJpzq3 e
∆ � 3DF p0q

�»
DF pz � yqJpyqdy

�
e∆ �

�»
DF pz � yqJpyq dy

�3

e∆ .

4) Action of the fourth derivative

δ4

δJpzq4 e
∆ � 3D2

F p0qe∆ � 6DF p0q
�»

DF pz � yqJpyq dy

�2

e∆ �
�»

DF pz � yqJpyq dy

�4

e∆ .

We can represent the final result graphically. The propagator is denoted by a straight line, the cross
means the source and DF p0q is a circle�

1� i
g

4!

»
dz

δ4

δJpzq4
�
e∆ �

�
1� i

g

4!

»
dz
�
3
ìì�6�

Ì
��

¡��
e∆ . (7.12)

The meeting of four lines at a point in all three diagrams is a clearly a consequence of the fact
that the interaction term (the potential) is φ4. Moreover, the coefficients 3,6, and 1 in front of
the Feynman diagrams follow from simple symmetry considerations. The first term, for instance,
results from joining up the two pairs of lines in the third term, in all possible ways; there are three
different ways to do this. The second coefficient is obtained by joining any two lines of the third
diagram, obviously this can be done in six different ways. These numerical coefficients are known
as the symmetry factors.

The first term is known as a vacuum diagram, because it has no external lines. It is easy to obtain
the denominator of ZrJs, one has to put J � 0 in the terms of the numerator we just obtained.
Thus, ZrJs has the form

ZrJs �

�
1� ig

4!

³
dz
�
3
ÌÌ�6�

Ì
����

� . . .

�
e∆

�
1� ig

4!

³
dz
�

3
ÌÌ	

� . . .
� .
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In fact, the denominator contains the sum of unity and all vacuum bubbles. If we expand denomi-
nator we will get

ZrJs �
�
e∆ � ig

4!

»
dz
�
3
ìì�6�

Ì
��

¡�
e∆ � . . .

�
�
�
1� ig

4!

»
dz
�

3
ìì	

� . . .

�
�

� e∆ � ig

4!

»
dz
�
3���
ìì� 6�

Ì
��

¡�
e∆ � ig

4!

»
dz
�

3���
ìì	

e∆ � . . . �

�
�
1� ig

4!

»
dz
�
� 6�

Ì
��

¡�
� . . .

�
e∆ .

As we see, the vacuum bubble disappeared from ZrJs. Actually, this property will hold to all
orders in perturbation theory and it is the general property of normalized generating functionals.
Thus, in our further considerations we will just ignore the vacuum diagrams.

Let us compute now two-point Green’s function by using our result for ZrJs

Gpx1, x2q � 1

i2
δ2ZrJs

δJpx1qδJpx2q
���
J�0

. (7.13)

A simple computation gives

Gpx1, x2q � DF px1 � x2q � ig

4!
12DF p0q

»
dz DF pz � x1qDF pz � x2q � . . . �

� DF px1 � x2q � ig

2
DF p0q

»
dz DF pz � x1qDF pz � x2q � . . . (7.14)

We thus clearly see the two-point function in the interacting theory contains a correction to the
propagator of the free theory already at the leading order of perturbation theory. This correction
has an important physical interpretation which we will now discuss. To this end, we first compute

� ig

4!
12DF p0q

»
dz DF pz � x1qDF pz � x2q �

� � ig
2
DF p0q

»
d4z

d4k

p2πq4
d4p

p2πq4
i

k2 �m2 � iε

i

p2 �m2 � iε
e�ikpz�x1q�ippz�x2q �

� ig

2
DF p0q

»
d4k

p2πq4
e�ikpx1�x2q

pk2 �m2 � iεq2 .

Hence, we can write

Gpx1, x2q �
»

d4k

p2πq4
i e�ikpx1�x2q

k2 �m2 � iε
� g

2
DF p0q

»
d4k

p2πq4
i e�ikpx1�x2q

pk2 �m2 � iεq2 � . . . .

Consider now the expression

1

k2 �m2 � iε� α
� 1

k2 �m2 � iε

1

1� α
k2�m2�iε

� 1

k2 �m2 � iε

�
1� α

k2 �m2 � iε

	
�

� 1

k2 �m2 � iε
� α

pk2 �m2 � iεq2 ,

where we have assumed that α is small. Comparing this expansion with the expression for Gpx1, x2q,
we see that the latter can be rewritten as

Gpx1, x2q �
»

d4k

p2πq4
i e�ikpx1�x2q

k2 �m2 � g
2 DF p0q � iε

. (7.15)

80



We see that the pole of the propagator gets shifted and it equals to

m2 � g

2
DF p0q � m2 � δm2 � m2

r ,

where
δm2 � g

2
DF p0q .

The mass mr is called the physical or renormalized mass. Notice that

DF p0q �
»

d4k

p2πq4
i

k2 �m2 � iε

is the quadratically divergent quantity. Thus, the original mass m2 is renormalized by an infinite
quantity, but this is in accord with the basic idea of renormalization – a physical quantity (mass, in
the present case) is not the same as the parameter in the Lagrangian, if an interaction is present.

Now we look for the four-point function (we now do not take into account the bubles)

Gpx1, x2, x3, x4q � 1

i4
δ4ZrJs

δJpx1qδJpx2qδJpx3qδJpx4q �

� 1

i4
δ4

δJpx1qδJpx2qδJpx3qδJpx4q
�
1� ig

4!

»
dz
�
� 6�

Ì
��

¡�
� . . .

�
e∆

� DF px1 � x2qDF px3 � x4q �DF px1 � x3qDF px2 � x4q �DF px1 � x4qDF px2 � x3q �
� ig

4

δ4

δJpx1qδJpx2qδJpx3qδJpx4q
�»

dz �
Ì

�
�
e∆

� ig
4!

δ4

δJpx1qδJpx2qδJpx3qδJpx4q
�»

dz
¡�

e∆ . (7.16)

We have

ig

4

δ4

δJpx1qδJpx2qδJpx3qδJpx4q
�»

dz �
Ì

�
�
e∆ � (7.17)

� � ig
2
DF p0q

»
dz
�
DF pz � x1qDF pz � x2qDF px3 � x4q �DF pz � x1qDF pz � x3qDF px2 � x4q

�DF pz � x1qDF pz � x4qDF px2 � x3q �DF pz � x2qDF pz � x3qDF px1 � x4q
�DF pz � x2qDF pz � x4qDF px1 � x3q �DF pz � x3qDF pz � x4qDF px1 � x2q

�
.

The symmetry factor of this diagram is 12. The last term gives

� ig
4!

δ4

δJpx1qδJpx2qδJpx3qδJpx4q
�»

dz
¡�

e∆ � (7.18)

� � ig
4!

δ4

δJpx1qδJpx2qδJpx3qδJpx4q
�»

dz DF pz � xqJpxq
�4

e∆ �

� �ig
»

dz DF px1 � zqDF px2 � zqDF px3 � zqDF px4 � zq .

The first term of the order g0 does not contribute to the non-trivial scattering. The numerical
coefficients are easily derived by combinatorics, and this suggest a rather simple way to write a
diagram at a given order of perturbation theory. Let us return to our main example of the g

4!φ
4

theory and consider all diagrams with contribute to the four-point function. We deduce them as
follows. At order gn we have n vertices, see figure 7.2 and corresponding to the four-point function
we draw four external lines, see figure 7.3.
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Figure 7.2: At order gn there are n vertices.

Figure 7.3: Four external lines of the four-point function.

The four-point function is constructed from the following prediagram figure 7.4. We can now
join up all the lines. There are three topologically distinct types of Feynman graphs drawn in figure
7.4. The multiplicities are calculates as follows

1) To get diagram (a) join x1 to one of the legs of the vertex. There are four ways to do it. Now
joint x2 up to one of the remaining legs – there are three ways. Altogether, there are 4! � 24
ways to obtain the diagram (a)., which is precisely the coefficient in equation (7.18).

2) To make diagram (b) join x1 directly to one of the external points x2, x3 or x4. There are three
ways to do it. Chose one leg of the vertex and join it up to one of the remaining external legs.
There are 4� 2 ways to do it. Join one of te remaining legs of the vertex to the one remaining
point. Join the remaining two legs together. The total multiplicity is 3� 4� 2� 3 � 12� 6,
as in (7.17).

3) The multiplicity of the diagram (c) is 3 � 3 � 9. The diagram (c) does not appear because
we assume to work with the properly normalized functional ZrJs which produces no vacuum
diagram.

In summary, the Feynman rules for φ4 theory are rather simple: every line corresponds to the
propagator DF px � yq; every vertex contributes �ig together with one integration; every diagram
must be multiplied by a symmetry factor S{24!. The graph (b) is called disconnected and it does
not contribute to the S-matrix (it modifies a propagator of one of the particles). Only connected
graphs, like

�
contribute to S � 1, that is to the non-trivial part of the S-matrix.

7.3 Generating functional for connected diagrams

It turns out that there exists the generating functional which produces the connected diagrams only!
It is called W rJs and it is related to ZrJs by the following formula

ZrJs � eiW rJs Ñ W rJs � �i logZrJs .
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Figure 7.4: Prediagram to construct the four-point function and Feynman diagrams obtained at
order g.

The corresponding connected Green’s functions are denoted by Gc and they are given by

Gcpx1, . . . , xnq � 1

in�1

δnW rJs
δJpx1q . . . δJpxnq . (7.19)

By using as an example two- and four-point functions let us show that W rJs produces no dis-
connected graphs. We have

δ2W rJs
δJpx1qδJpx2q �

i

ZrJs2
δZrJs
δJpx1q

δZrJs
δJpx2q �

i

ZrJs
δ2ZrJs

δJpx1qδJpx2q . (7.20)

Now taking into account that Zr0s � 1 and δZrJs
δJpxq

���
J�0

� 0, we find

1

i

δ2W rJs
δJpx1qδJpx2q � � δ2ZrJs

δJpx1qδJpx2q �
1

i2
δ2ZrJs

δJpx1qδJpx2q � Gpx1, x2q . (7.21)

This shows that W rJs generates the propagator to any order in g. This is expectable since the
propagator has no disconnected parts. To find the four-point function, we differentiate W rJs twice
more and put J � 0 at the end.

First, for the third derivative we find

δ3W rJs
δJpx1qδJpx2qδJpx3q � � 2

ZrJs3
δZ

δJpx1q
δZ

δJpx2q
δZ

δJpx3q

� i

ZrJs2
δ2Z

δJpx1qδJpx3q
δZ

δJpx2q �
i

ZrJs2
δ2Z

δJpx2qδJpx3q
δZ

δJpx1q �
i

ZrJs2
δ2Z

δJpx1qδJpx2q
δZ

δJpx3q

� i

ZrJs
δ3ZrJs

δJpx1qδJpx2qδJpx3q
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and now applying one more derivative and putting J � 0, we get up to the order g

δ4W rJs
δJpx1qδJpx2qδJpx3qδJpx4q

���
J�0

� i

�
� δ4ZrJs
δJpx1qδJpx2qδJpx3qδJpx4q

�

� δ2Z

δJpx1qδJpx3q
δ2Z

δJpx2qδJpx4q
� δ2Z

δJpx2qδJpx3q
δ2Z

δJpx1qδJpx4q
� δ2Z

δJpx1qδJpx2q
δ2Z

δJpx3qδJpx4q

�
�

� i
�
Gpx1, x2qGpx3, x4q �Gpx1, x3qGpx2, x4q �Gpx1, x4qGpx2, x3q �Gpx1, x2, x3, x4q

�
�

�
�
DF px1 � x2q � ig

2
DF p0q

»
dz DF pz � x1qDF pz � x2q

��
DF px3 � x4q � ig

2
DF p0q

»
dz DF pz � x3qDF pz � x4q

�
�

�
�
DF px1 � x3q � ig

2
DF p0q

»
dz DF pz � x1qDF pz � x3q

��
DF px2 � x4q � ig

2
DF p0q

»
dz DF pz � x2qDF pz � x4q

�
�

�
�
DF px1 � x4q � ig

2
DF p0q

»
dz DF pz � x1qDF pz � x4q

��
DF px2 � x3q � ig

2
DF p0q

»
dz DF pz � x2qDF pz � x3q

�
�

�rDF px1 � x2qDF px3 � x4q �DF px1 � x3qDF px2 � x4q �DF px1 � x4qDF px2 � x3q
� ig

2
DF p0q

»
dz
�
DF pz � x1qDF pz � x2qDF px3 � x4q �DF pz � x1qDF pz � x3qDF px2 � x4q
�DF pz � x1qDF pz � x4qDF px2 � x3q �DF pz � x2qDF pz � x3qDF px1 � x4q
�DF pz � x2qDF pz � x4qDF px1 � x3q �DF pz � x3qDF pz � x4qDF px1 � x2q

�
� ig

4!

� »
dz DF px1 � zqDF px2 � zqDF px3 � zqDF px4 � zq � 24 terms

��
. (7.22)

The result is

δ4W rJs
δJpx1qδJpx2qδJpx3qδJpx4q

���
J�0

� � ig
4!

�»
dz DF px1 � zqDF px2 � zqDF px3 � zqDF px4 � zq � 24 terms

�
,

which is the sum of connected graphs only.

7.4 Connected diagrams in the momentum space

It is very convenient to work with Green’s functions in the momentum space as it allows one to
straightforwardly define the vertex functions – one of the most important notions in quantum field
theory. Green’s functions in the momentum space are defined as the Fourier transform of the
coordinate space Green’s functions

Gpp1, . . . , pnq �
» n¹
i�1

dxi e
ip1x1�...pnxn Gpx1, . . . , xnq . (7.23)

Since we are interested in the connected Green’s functions below we compute the two- and four-point
connected functions in the momentum space up to the order g. We have

Gcpp1, p2q �
»

dx1dx2 e
ip1x1�ip2x2

»
d4k

p2πq4
ieikpx1�x2q

k2 �m2 � iεloooooooooooomoooooooooooon
DF px1�x2q

�

� g

2
DF p0q

»
dx1dx2 e

ip1x1�ip2x2

»
d4k

p2πq4
i e�ikpx1�x2q

pk2 �m2 � iεq2 � . . .

Taking into account that the δ-function in d-dimensions has the following Fourier transform

δpxq �
»

eikx

p2πq4 dx ,
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we find

Gcpp1, p2q � p2πq4δpp1 � p2q
�

i

p2
1 �m2 � iε

� i

p2
1 �m2 � iε

g
2DF p0q

i

i

p2
1 �m2 � iε

� . . .

�
.

Analogously, for the four-point function at the leading order g we compute

Gcpp1, p2, p3, p4q � �ig
» � 4¹

i�1

»
dxi e

ipixi
	 »

dz
4¹
i�1

DF pxi � zq .

Performing the Fourier transform, we find

Gcpp1, p2, p3, p4q � p2πq4δpp1 � p2 � p3 � p4q
�
�ig

4¹
i�1

i

p2
i �m2 � iε

� . . .

�
. (7.24)

7.5 Self-energy and vertex function

We saw in the previous sections how to apply perturbation theory to calculating the 2- and 4-point
Green’s functions. We also found that the mass of a particle, defined as a pole of the two-point
function, was no longer the bare mass m2 but m2 � δm2, with δm2 � � g

2DF p0q in φ4 theory. Here
we want to look at the problem of summing to all orders and, therefore, obtaining the exact Green’s
functions. We will approach this problem again in φ4 theory.

As was already mentioned, to study scattering processes, we are most interested in connected (also
called irreducible) Feynman graphs, which are generated by the functional W rJs. All the graphs
generated by ZrJs can be expressed via connected ones entirely through the formula ZrJs � eiW rJs.
More precisely, if we denote by Gpnq the n-point Green’s function and by G

pnq
c the corresponding

connected one, then Gpnq is equal to G
pnq
c plus products of Gpmq, connected Green’s point functions

of lower order m   n.

We therefore made a digression from the class of all Feynman diagrams to the class of connected
ones. Now we make a further digression from the class of connected diagrams to the class of one-
particle irreducible ones. Ignoring numerical prefactors, the connected 2-point function is, to all
orders,

Figure 7.5: Connected 2-point Green’s function at all orders in g.
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We want to develop a method for summing up all these graphs. The sum will be naturally called
the complete or dressed propagator. The effect of all interacting graphs is to change the physical
mass away from the bare mass and, therefore, give rise to self-energy. Note first that all graphs
contain two free external propagators. This allows us to define truncated graphs by multiplying the
external legs with inverse propagators. For instance at order g2 we will have three truncated graphs
Of the three truncated graphs of order g2, the first is a product of of graphs of the lower order,

Figure 7.6: Truncated 2-point graphs at order g2.

but the other two are not; this is because the first graphs contains the propagator. It is called one-
particle reducible, while the other two graphs – one-particle irreducible. In general, a one-particle
irreducible graph (1PI) is the graph which cannot be make disconnected by removing one line (i.e.
one propagator). Based on this classification, we may define the proper self-energy part as a sum of
all 1PI graphs, see figure 7.7. The complete propagator in the momentum space may therefore be

+

=

+

+

Figure 7.7: One-particle irreducible graphs contributing to the self-energy 1
iΣ.

written in terms of the bare propagator G0 � i
p2�m2 and the proper self-energy 1

iΣppq as follows

G
p2q
c ppq � G0ppq �G0ppqΣppq

i
G0ppq �G0ppqΣppq

i
G0ppqΣppq

i
G0ppq � . . . �

� G0ppq
�
1� Σppq

i
G0ppq � Σppq

i
G0ppqΣppq

i
G0ppq � . . .

�
�

� G0ppq
�
1� Σppq

i
G0ppq

��1

�
�
G�1

0 ppq � Σppq
i

��1

�

� i

p2 �m2 � Σppq . (7.25)

Here the function G
p2qppq is defined as

Gcpp1, p2q � p2πq4δpp1 � p2qGp2qppq , p � p1 ,

i.e. by stripping off from the momentum space expression Gcpp1, p2q the delta function δpp1 � p2q.

86



Defining the physical mass mphys by the pole of the complete propagator

G
p2q
c ppq � i

p2 �m2
phys

gives
m2

phys � m2 � Σppq ,
which justifies the term “self energy” for Σppq. It represents a change from the bare mass to the
physical one to all orders in perturbation theory. It happens not because we have divergent diagrams
rather because the theory is interacting.

We see that �
G
p2q
c ppq

��1

� G�1
0 ppq � Σppq

i
� 1

i

�
p2 �m2 � Σppq

�
.

This leads to

G
p2q
c ppqΓp2qppq � G

p2q
c ppq

�
p2 �m2 � Σppq

�
� i . (7.26)

The inverse of the complete propagator is called the vertex function Γ
p2qppq and it contains the

inverse of the free propagator plus the sum of 1PI graphs:

Γ
p2qppq � p2 �m2 � Σppq . (7.27)

Let us show that there exists a generating functional for the functions Γpnq. It is denoted by Γrφs
and is defined by means of the Legendre transform

W rJs � Γrφs �
»

dxJpxqφpxq . (7.28)

One gets

δW rJs
δJpxq � φpxq , Γrφs

δφpxq � �Jpxq . (7.29)

For the propagator we

Gcpx1, x2q � 1

i

δ2W

δJpx1qδJpx2q � �i δφpx1q
δJpx2q . (7.30)

Define the kernel

Γpx1, x2q � δ2Γrφs
δφpx1qδφpx2q � �δJpx1q

δφpx2q . (7.31)

It is easy to see that this kernel is inverse to the propagator»
dz Gcpx1, zqΓpz, x2q �

»
dz

δφpx1q
δJpzq

δJpx1q
δφpx2q � i

δφpx1q
δφpx2q � iδpx1, x2q . (7.32)

We define the inverse Fourier transform of Gcpx1, x2q

Gcpx1, x2q �
»

dp1dp2

p2πq8 e�ipx1p1�x2p2qp2πq4δpp1 � p2qGp2q
c pp1q �

�
»

dp

p2πq4 e
�ippx1�x2qG

p2q
c ppq
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and also of the vertex function

Γpx1, x2q �
»

dp1dp2

p2πq8 e�ipx1p1�x2p2qp2πq4δpp1 � p2qΓp2qpp1q �

�
»

dp

p2πq4 e
�ippx1�x2qΓ

p2qppq .

Plugging these expressions in the left hand side of (7.32) and integrating over z, we find»
dz Gcpx1, zqΓpz, x2q �

»
dp

p2πq4 e
�ippx�yqG

p2q
c ppqΓp2qppq � i

»
dp

p2πq4 e
�ippx�yq , (7.33)

where we have written the delta-function on the right hand side of (7.32) via its Fourier image. The
relation we just obtained implies the relation (7.26).

=W

Figure 7.8: The relation between the connected three-point function G
p3q
c and the vertex function

Γp3q. The connected Green’s function is nothing else as the vertex function with external lines being
the dressed propagators.

Consider the equality (7.32) again and write it in the form»
dz

δ2W rJs
δJpx2qδJpzq

δ2Γrφs
δφpzqδφpz1q � �δpx2 � z1q (7.34)

We have the following identity

δ

δJpxq �
»

dz
δφpzq
δJpxq

δ

δφpzq � i

»
dz Gcpz, xq δ

δφpzq .

We take a variation of equation (7.35) over Jpx2q and use the identity above»
dz

δ2W rJs
δJpx1qδJpx2qδJpzq

δ2Γrφs
δφpzqδφpz1q �

»
dz

δ2W rJs
δJpx2qδJpzq

δ

δJpx1q
� δ2Γrφs
δφpzqδφpz1q

�
�

�
»

dz
δ2W rJs

δJpx1qδJpx2qδJpzqΓpz, z1q �
»

dzdz2Gcpx2, zqCcpz2, x1q δ3Γrφs
δφpzqδφpz2qφpz1q � 0 .

Multiplying both sides of the last relation with Gcpz1, x3q and integrating over z1, we get the following
remarkable relation

δ2W rJs
δJpx1qδJpx2qδJpx3q � �

»
dz1dz2dz3 Gcpx1, z1qGcpx2, z2qGcpx3, z3q δ3Γrφs

δφpz1qδφpz2qδφpz3q . (7.35)

The previous relation means

Gcpx1, x2, x3q � 1

i

»
dz1dz2dz3 Gcpx1, z1qGcpx2, z2qGcpx3, z3qΓp3qpz1, z2, z3q . (7.36)
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and its meaning is explained in figure 7.8. The last formula can be inverted with the help of relation
(7.32) giving

Γp3qpx1, x2, x3q � i

»
dz1dz2dz3 Γpz1, x1qΓpz2, x2qΓpz3, x3qGp3q

c pz1, z2, z3q . (7.37)

Differentiating these relations again we find the expression for the connected four-point function,
see figure 8.4.

Figure 7.9: The relation between the connected four-point function G
p4q
c and the vertex functions

Γp3q and Γp4q. These vertex functions are 1PI irreducible blocks which are glued by means of dressed
propagators.

In general we have

Γrφs �
8̧

n�0

1

n!

»
dx1 . . . dxn Γpnqpx1 . . . xnqφpx1q . . . φpxnq . (7.38)

Since an arbitrary connected diagram is obtained once and only once as a tree diagram using
these complete propagators and proper vertices, the proper vertices must be one-particle irreducible
amputated n-point functions. Since a tree diagram is never divergent if the vertices and propagators
are finite, it is clear that any diagram will be finite if all Γpnq are. Hence the issue of renormalization
can be entirely discussed at the level of Γpnq.

7.6 Functional methods for fermions

The fermions satisfy the anti-commutation relations

tψpxq, ψpyqu � 0 .

Thus, in quantum theory fermions must be realized as anti-commuting operators. In the approach
based on the functional integration, the generating functional for Green’s functions is written as
a functional integral over the fields, which are regarded as classical fields. These classical fields,
however, are ant-commuting numbers at each space-time point. As such they satisfy the so-called
Grassmann algebra which is generated by letters Ci satisfying the relations

tCi, Cju � CiCj � CjCi � 0 , i � 1, . . . , n .
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These relations imply that C2
i � 0. Any function of Ci can be expanded as

fpCiq � a0 � aiCi � aijCiCj � aijkCiCjCk � . . .� a1...nC1 . . . Cn . (7.39)

The operations of multiplication and differentiation satisfy the following rules"
Ci,

B
BCj

*
� δij ,

" B
BCi ,

B
BCj

*
� 0 .

We need to define integration with respect to the grassmann variables. The rules are»
dCi � 0 ,

»
dCi Ci � 1 , (7.40)

where no summation over i is assumed.

Let us now η and η̄ be independent complex grassmann variables, so that»
dη �

»
dη̄ � 0 ,

»
dη η � dη̄ η̄ � 1 .

Since, η2 � η̄2 � 0, we have e�ηη̄ � 1� ηη̄ and, therefore,»
dηdη̄ e�ηη̄ �

»
dηdη̄ �

»
dηdη̄ ηη̄ � 0� 1 � 1 . (7.41)

We would like to generalize this formula to the higher dimensional case. For the two-dimensional
case we have

η �
�
η1

η2



, η̄ �

�
η̄1

η̄2



. (7.42)

Now we have η̄η � η̄1η1 � η̄2η2 and

pη̄ηq2 � pη̄1η1 � η̄2η2qpη̄1η1 � η̄2η2q � η̄1η1η̄2η2 � η̄2η2η̄1η1 � 2η̄1η1η̄2η2 . (7.43)

Thus,

e�ηη̄ � 1� pη̄1η1 � η̄2η2q � 1

2!
� 2η̄1η1η̄2η2 .

Defining he integration measure as

dη dη̄ � dη̄1dη1dη̄2dη2

we have »
dηdη̄ e�ηη̄ �

»
dη̄1dη̄2 dη1dη2 η̄1η1η̄2η2 � 1 .

Thus the result we get for the two-dimensional case, according to our rules, is the same as in the
one-dimensional case! More generally, we could consider the change of variables

η �Mα , η̄ � Nᾱ ,

where M and N are two 2� 2 matrices and α and ᾱ are the new independent grassmann variables.
In particular, we have,

η1η2 � pM11α1 �M12α2qpM21α1 �M22α2q � pM11M22 �M12M21qα1α2 � detMα1α2 .
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However, if we would like to preserve the integration rule»
dη1dη2η1η2 �

»
dα1dα2 α1α2

we must require
dη1dη2 � pdetMq�1dα1dα2 ,

which is very opposite to the logic of the change of variables! We further have

pdetMNq�1

»
dᾱdα e�ᾱN

tMα � 1 .

Since detMN � detM tN . denoting M tN � A, we have»
dα1dα2 e

�ᾱAα � detA . (7.44)

This is an extremely important formula in the calculus of grassmann variables!

To describe fields with the Fremi statistics, we have to introduce an infinite-dimensional grass-
mann algebra with generators Cpxq. The generators obey the anti-commutation relation

tCpxq, Cpyqu � 0 ,

and the integration rules »
dCpxq � 0 ,

»
CpxqdCpxq � 1 .

With these rules we can write the vacuum-to-vacuum transition amplitude for the free Dirac field

Z0rη, η̄s � 1

N

»
Dψ̄Dψ exp

�
i

»
ψ̄pxqpiγµBµ �mqψpxq � η̄pxqψpxq � ψ̄pxqηpxq

�
, (7.45)

where the normalization constant is chosen as

N �
»

Dψ̄Dψ exp
�
i

»
ψ̄pxqpiγµBµ �mqψpxq

�
.

Here η̄pxq represents the source term for ψpxq and ηpxq the source for ψ̄pxq.
Our next goal is to calculate Green’s functions in the same manner as has been done for the

Klein-Gordon field. Introduce for simplicity the following notation

S�1 � iγµBµ �m,

so that

Z0rη, η̄s � 1

N

»
Dψ̄Dψ exp

�
i

»
ψ̄pxqS�1ψpxq � η̄pxqψpxq � ψ̄pxqηpxq

�
. (7.46)

To evaluate this integral, we define

Qpψ, ψ̄q � ψ̄S�1ψ � η̄ψ � ψ̄η

and find the value of ψ which extremizes Q. It is

δQ

δψ̄
� S�1ψ � η � 0 Ñ ψext � �Sη , ψ̄ext � �η̄S .

91



Thus,
Qpψext, ψ̄extq � �η̄Sη

and the path integral takes the form

Z0rη, η̄s � 1

N

»
Dψ̄Dψ exp

�
i

»
dx
�� η̄Sη � pψ̄ � ψ̄extqS�1pψ � ψextq

��
� 1

N
exp

�
� i

»
η̄pxqSηpyqdxdy

�
detp�iS�1q . (7.47)

This gives

Z0rη, η̄s � exp
�
� i

»
η̄pxqSpx� yqηpyqdxdy

�
,

where
Spxq � piγµBµ �mqDF pxq

is nothing else but the Feynman propagator for the Dirac field. Analogously, to the Klein-Gordon
case, we can define the two-point Green’s function

Gpx, yq � 1

i2
B2Z0rη, η̄s
δηpxqδη̄pyq

���
η�η̄�0

� iSpx� yq . (7.48)

The generalization to the interacting case is straightforward

Zrη, η̄s � exp
�
i

»
Lint

�1

i

δ

δη
,

1

i

δ

δη̄

	
dx
�
Z0rη, η̄s .
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Chapter 8

Renormalization

If the doors of perception were cleansed everything
would appear as it is, infinite.

William Blake
The Marriage of Heaven and Hell

Integration over internal loops in Feynman diagrams often leads to divergent expressions. Thus,
the perturbation series is miningless unless we find a way to solve this divergence problem. In this
chapter we discuss how this can be done for the φ4 theory. The main idea is to build up the pertur-
bation series order by order in the coupling constant and to show that at any given order physical
quantities (such as mass, coupling constant, Green’s functions) can always be renormalized to finite
values. In the theories like φ4, Quantum Electodynamics (QED) and Quantum Chromodynamics
(QCD) the renormalization procedure can be carried out to all orders and, therefore, these theories
are renormalizable.

8.1 Superficial degree of divergence

As we have seen, the quantity DF p0q is divergent and it modifies the propagator of the free particle
giving a contribution to the self-energy. In the momentum space the corresponding expression is

g

2
DF p0q � g

2

»
d4k

p2πq4
i

k2 �m2 � iε
. (8.1)

Obviously, in the spherical coordinate system d4k is proportional to k3, while denominator grows as

Figure 8.1: Divergent diagram at order g. It has one loop L � 1 and one internal line I � 1. The
superficial degree of divergence is D � 2.

k2, so that the integrand behaves as k for large values of k and, therefore, the integral is quadratically
divergent.
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This divergence arises for large values of momenta and, for this reason, it is called ultra-violet1.
Another divergent quantity arises at order g2 it is given by the following expression

g2

»
d4q1

p2πq4
d4q2

p2πq4
δpq1 � q2 � p1 � p2q
pq2

1 �m2qpq2 �m2q � g2

»
d4q

p2πq8
1

pq2 �m2qppp1 � p2 � qq2 �m2q . (8.2)

This diagram is logarithmically divergent.

Figure 8.2: Divergent diagram at order g2, It has one loop L � 1 and two internal lines I � 2. The
superficial degree of divergency D � 0.

There is a general way to find a degree of divergence of a particular Feynman graph. Each
propagator contributes a power of q2 in the denominator, each vertex four powers of q in the
numerator, together with the momentum conservation δ-function. Also, the number of independent
momenta (over which we integrate) is the same as a number of loops. So consider a diagram with
of order gn, i.e. a diagram with n vertices, E external lines, I internal lines and L loops and, for
generality, consider a theory in d-dimensions. The superficial degree of divergency of such a diagram
is

D � dL� 2I .

Thus, indeed, with this formula we find for the diagrams discussed D � 2 and D � 0. We want to
express this formula in terms of E and n, i.e. we want to eliminate I and L. There are I internal
momenta. There is a momentum conservation at each vertex (of which there are n), but there is
a total momentum conservation, so there are n � 1 constraints between the momenta. Hence the
number of independent momenta is I�n�1 and it concides with the number of loops L � I�n�1.
In φ4 theory each vertex has four legs; so all together there are 4n legs at order n – some of them are
external and some of them are internal, internal legs are counted twice as the connect two vertices:

4n � E � 2I .

Thus, we get

D � dpI � n� 1q � 2I � dp2n� E{2� n� 1q � p4n� Eq � d�
�d

2
� 1
	
E � npd� 4q .

For d � 4 we have D � 4� E. This indicates that diagrams with more external legs than 4 will all
converge. For instance, if E � 6, D � �2.

Could we imagine that d is a little bigger than 4? Would it be the case we would run into a
terrible situation that the superficial power of divergency increases with the number of loops! This
means that adding one more term of perturbation theory leads to more severe divergence. Obviously,
to treat such theories from the perturbative standpoint is hopeless. For φ4 in four dimensions we see
however that D depends on E only, but not on the order of perturbation theory. Here we are lucky
to have only a small number of divergent graphs and the hope is that their effect can be eliminated

1Divergences in the Feynman diagrams arising for small values of k are called infra-red. We will not touch the
issue of the infra-red divergencies here.
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by infinite renormalization of various physical quantities. In the case this turns out to be true the
corresponding theories are called renormalizable. Note that the situation improves if d is slightly
less than 4, because in this case the term npd � 4q contributes negatively to D. This fact will be
used in the dimensional regularization procedure described in the next section.

If our theory would be φr, then the corresponding superficial degree of divergency would be

D � d�
�d

2
� 1
	
E � n

�r
2
pd� 2q � d

�
, (8.3)

which for d � 4 gives

D � 4� E � npr � 4q . (8.4)

From this formula we see, for instance, that the φ6 theory is nonrenormalizable, while for φ3 we have
D � 4�E � n and it is called superrenormalizable because D decreases with n meaning that there
is only finite number of divergent graphs for a given E. Note also that in two dimensions D � 2�2n
independent on r.

Let us now return back to D � 4 � E and figure out if all graphs with E ¡ 4 are actually
convergent.

Figure 8.3: The graph aq is convergent. The graphs bq contains the one-loop contribution to the two-
point function – it is divergent. Similarly, cq contains two one-loop contributions to the four-point
function, it is also divergent.

The situation outlined in figure 8.3 happens to all loop orders. This means that a given Feynman
graph diverges if it has hidden two- or four-point functions with one loop (or more) – this is despite
of the formula D � 4 � E! This is precisely the reason why D is called a a superficial degree of
divergency. There is an important Weinberg’s theorem which says that a Feynman diagram converges
if its degree of divergences D, together with the degree of divergence of all its subgraphs, is negative.
The two divergent diagrams Gp2q and Gp4q we discussed above are called primitive. They are the
only primitive divergencies in φ4 theory.

8.2 Dimensional regularization

Regularization is a method of isolating the divergencies of the Feynman integrals. Regularization
can be performed in a variety of different ways. One extremely intuitive is to introduce a cut-off in
the Feynman integrals in the momentum space. For instance, in QED the photon propagator gets
modified as

1

p2
Ñ 1

p2
� 1

p2 � Λ2
� � Λ2

p2pp2 � Λ2q
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As usual, the game relies on the order of limits! Obviously, introduction of Λ improves the con-
vergence properties of the Feynman integrals in the ultra-violet region, but simultaneously such a
regularization procedure brings quite a lot of difficulties when non-abelian gauge theories are con-
cerned. One very interesting regularization scheme is that of dimensional regularization. The main
idea here is to treat the divergent loop integrals as integrals over d-dimensional momenta and take a
limit dÑ 4 at the very end of the calculation only. In this approach the singularities of the Feynman
graphs show up as simple poles in the variable d� 4.

To explain the dimensional regularization scheme, we have first to generalize the Lagrangian
description of the system to d dimensions. For the Lagrangian density we have

L � 1

2
Bµφ0φ

µφ0 � m2
0

2
φ2

0 �
g0

4!
φ4 .

If we stay with the units ~ � 1 � c in which the action is dimensionless, then the mass dimension
of φ is rφs � d

2 � 1. The coupling constant, also called ‘charge’, is dimensionless in
four dimensions, but if we want to keep it dimensionless in d dimensions, it must be
multiplied by µ4�d, where µ is an arbitrary mass parameter. We will make use of this fact
later. We call this L the bare Lagrangian with the bare field φ0, the bare mass m0 and the bare
charge g0. As a result of interactions, these bare quantities will undergo a non-trivial renormalization.

One-loop contribution to the self-energy

The one-loop integral contributing to the modification of the propagator is

g0

2

»
ddp

p2πqd
i

p2 �m2
0 � iε

(8.5)

Due to the fact that rg0s � 4� d, the mass dimension of this integral is exactly 2.

Thus, we have to learn how to compute this integral in d dimensions. We assume that our space
has a Minkowski-like signature with one time- and pd � 1q space-like directions. In general, we are
interested in the integrals of the type2

Irds �
»

ddp

pp2 � 2pq �m2qα , (8.6)

where q is another fixed d-dimensional vector. To proceed, we first make a change of pµ Ñ pµ � qµ
so that the integral takes the form

Irds �
»

ddp

rp2 � pq2 �m2qsα .

Second, we to rotate the integration contour through 900 (Wick rotation) and change the variables
p0 Ñ ip0. The integral becomes

Irds � ip�1qα
»

ddp

rp2 � pq2 �m2qsα � ip�1qα
»

ddp

pp2 � cqα . (8.7)

where we introduce a concise notation c � q2 �m2. To compute the last integral, we pass to the
spherical coordinates in d-dimensions

p � pr, φ, θ1, θ2, . . . θd�2q
2As our discussion of the integration in d-dimensions is general, we use here the notation m2 instead of m2

0.
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The measure is

ddp � rd�1dr dφ
d�2¹
k�1

sink θkdθk .

This is the standard formula of the change of variables in the integration measure and below we
indicate the integration regions of parameters

r   0   8 , 0   φ   2π , 0   θi   π .

Further, we have (this formula can be, for instance, easily checked with the Mathematica pro-
gram) » π

0

sink θ dθ � ?
π

Γ
�
k�1

2

	
Γ
�
k�2

2

	 .
and, therefore,

d�2¹
k�1

» π
0

sink θk dθk � π
d�2

2
Γp1q
Γp 3

2 q
Γp 3

2 q
Γp2q

Γp2q
Γp 5

2 q
. . .

Γpd�1
2 q

Γpd2 q
� π

d�2
2

Γpd2 q
.

Thus,

»
ddp

pp2 � cqα � 2π
d
2

Γpd2 q
» 8

0

rd�1dr

pr2 � cqα � 2π
d
2 c

d
2�α

Γpd2 q
» 8

0

dt td�1p1� t2q�α , (8.8)

where we made a change of variables t � r{?c. The formula for the Euler beta-function

Bpx, yq � ΓpxqΓpyq
Γpx� yq � 2

» 8
0

dt t2x�1p1� t2q�x�y , (8.9)

valid for Rex ¡ 0 and Re y ¡ 0, so putting

x � d

2
, y � α� d

2
,

we have

»
ddp

pp2 � cqα �
π
d
2 c

d
2�αΓ

�
α� d

2

	
Γpαq . (8.10)

This is one of the main formulas of dimensional regularization. Thus, we finally obtain

Irds � p�1qαiπ d2
Γ
�
α� d

2

	
Γpαq

1

pq2 �m2qα� d
2

. (8.11)

One comment is in order. For the case α � 1 we are most interested in, y � 1 � d
2
� 1 � 2 � ε

2
� �1 � ε

2
, which

is less than zero for ε Ñ 0�. Thus, for ε in the vicinity of zero the integral (8.8) remains divergent and dimensional
regularization cannot make it finite. This is, of course, is the consequence of the fact that in four dimensions this
integral is quadratically divergent. Strictly speaking, only logarithmically divergent integrals can be made finite by
dimensional regularization with d � 4�ε. To understand this issue, we compute the integral (8.8) for α � 1 by putting
also a momentum cutoff Λ. For Re d ¡ 0 the integral exists and is evaluated in terms of the Gauss hypergeometric
function 2F1 »

ddp

p2 � c
� 2π

d
2 c

d
2
�1

Γp d
2
q

» Λ?
c

0
dt

td�1

1� t2
� 2π

d
2 c

d
2
�1

Γp d
2
q �

� Λ?
c

	d 1

d
2F1

�
1,
d

2
;

2� d

2
;�Λ2

c

	
. (8.12)
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The large Λ expansion gives

»
ddp

p2 � c
� 2π

d
2 c

d
2
�1

Γp d
2
q

� 8̧

k�1

p�1qk�1

d� 2k

� Λ?
c

	d�2k � 1

2
Γp1� d

2
qΓp d

2
q
�
. (8.13)

Thus, the answer contains two terms: the first one depending on Λ and the second, Λ-independent term, which
precisely coincides with the expression (8.10) with α � 1! In the renormalization procedure one first considers the
limit Λ Ñ8 while keeping ε fixed. As is clear from eq.(8.13), the series in Λ has a structure

1

2� ε

� Λ?
c

	2�ε � 1

ε

� Λ?
c

	�ε � . . .

For ε ¡ 0 in the limit Λ Ñ 8 only the first term matters. This term is regular in the limit ε Ñ 0. One normally
sets up a scheme, where a first step is to renormalize m2 by removing the Λ2-divergence while keeping ε finite. As
a second step, one performs a multiplicative ε-renormalization making Green’s functions finite in the limit ε Ñ 0.
Usually in the literature on dimensional regularization the first step is assumed as already implemented and therefore
is not discussed. In our treatment below we undertake the same root.

Returning back to our one-loop integral in d-dimensions, we find

g0

2

»
ddp

p2πqd
i

p2 �m2
0 � iε

� ig0

2p2πqd � Irdsα�1,q�0 � gm2
0

32π2

�4π2µ2

m2
0

	2� d
2

Γ
�

1� d

2

	
,

where we introduce a dimensionless coupling g through the relation g0 � gµ4�d, where µ is an
arbitrary mass parameter which represents a freedom of dimensional regularization.

The gamma function has poles at negative integers where

Γp�n� εq � p�1qn
n!

�1

ε
� ψ1pn� 1q �Opεq

�
, (8.14)

with

ψ1pn� 1q � 1� 1

2
� 1

3
� . . .� 1

n
� γ

and γ � �ψ1p1q � 0.577 being the Euler-Mascheroni constant. Taking ε � 4� d, we find

Γ
�

1� d

2

	
� Γ

�
� 1� ε

2

	
� �2

ε
� 1� γ �Opεq. (8.15)

Thus,

gµ4�d

2

»
ddk

p2πqd
i

k2 �m2 � iε
� gm2

32π2
e
ε
2 log

�
4π2µ2

m2

	
Γ
�

1� ε

2

	
εÑ0�

εÑ0� � gm2
0

16π2ε
� gm2

0

16π2

�
� 1� γ � log

�4π2µ2

m2
0

		
loooooooooooooooooooomoooooooooooooooooooon

finite

�Opεq . (8.16)

We clearly see that in dimensional regularization the divergence of the present integral manifests
itself as a pole in ε. Further, the finite part depends on an arbitrary mass scale µ; changing µÑ tµ
we can adjust the finite part to take any desired value! From this result we immediately read off the
contribution to the proper self-energy

Σ � � gm2

16π2ε
� finite (8.17)

and therefore the vertex function can be written up to Opεq as

Γp2qppq � p2 �m2
0

�
1� g

16π2ε
� g

16π2

�
� 1� γ � log

�4π2µ2

m2
0

		�
. (8.18)
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Figure 8.4: The vertex function Γp4q at the leading and sub-leading orders in perturbation theory.
Dashed lines depict the amputated propagators. The three graphs at order g2 are parametrized by
the Mandelstam variables s, t, u, respectively. At the leading order the vertex is simply gµε.

One-loop contribution to the four-point vertex function

Now we turn to the one-loop divergent integral at order g2
0

1

2
g2

0

»
ddq

p2πqd
1

pq2 �m2
0 � iεqppp1 � p2 � qq2 �m2

0 � iεq . (8.19)

Since g0 � gµ4�d the integral has the mass dimension 2p4�dq�d�4 � 4�d � ε. Using the formula

1

ab
�
» 1

0

dx

rax� bp1� xqs2 ,

we rewrite the integral as

1

2
g2pµ2q4�d

» 1

0

dx

»
ddq

p2πqd
1

rq2 � pp2 � 2pqqp1� xq �m2
0 � iεs2 , (8.20)

where p � p1 � p2. Making the shift of the integration variable q Ñ q � p1 � xqp, the integral is
brought to the form

1

2
g2pµ2q4�d

» 1

0

dx

»
ddq

p2πqd
1

rq2 � p2xp1� xq �m2
0 � iεs2 . (8.21)

After the Wick rotation it becomes

i

2
g2pµ2q4�d

» 1

0

dx

»
ddq

p2πqd
1

rq2 �m2
0 � p2xp1� xqs2 . (8.22)

The integral over momenta is computed by using the formula (8.10), so we get

iπ
d
2

2p2πqd g
2pµ2q4�dΓ

�
2� d

2

	 » 1

0

dx rm2
0 � p2xp1� xqs d2�2 �

� ig2pµ2q2�d2
32π2

Γ
�

2� d

2

	 » 1

0

dx
�m2

0 � p2xp1� xq
4πµ2

� d
2�2

. (8.23)

Here we written the integrand in such a way that it is dimensionless. Detection of the divergent and
the finite piece is easy. We have

ig2µε

32π2

�2

ε
� γ

	 » 1

0

dx e
� ε2
�
m2

0�p
2xp1�xq

4πµ2

�
�

� ig2µε

16π2ε
� ig2µε

32π2

�
γ �

» 1

0

dx ln
�m2

0 � p2xp1� xq
4πµ2

�

�Opεq .
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For 0 ¤ x ¤ 1 the maximum of xp1�xq is reached at x � 1{2 and it equals 1{4. Thus, for p2 ¡ 4m2

the argument of the logarithm is on the branch cut of the latter and the integral representation
above looses its validness. Note that the presence of µε reflects the correct mass dimension of the
original expression3. In what follows it is convenient to adopt the notation

F ps,m, µq �
» 1

0

dx ln
�m2 � sxp1� xq

4πµ2

�
, (8.24)

where s in the Mandelstam variable s � pp1 � p2q2. The other two Mandelstam variables are
t � pp1 � p4q2 and u � pp1 � p3q2. The Mandelstam variables are not independent; if all incoming
momenta are on-shell and because of the conservation law they satisfy the relation

s� t� u � 4m2 . (8.25)

In the region �8   p2   4m2 the integral can be computed to give» 1

0

dx ln
�m2 � p2xp1� xq

4πµ2

�
� ln

m2

4πµ2
� 2� 2

a
4m2 � p2a

p2
arctan

� a
p2a

4m2 � p2

�
. (8.26)

This result exhibits a square root branch cut with the branch point at p2 � 4m2. The expression

for the vertex function Γ
p4q

reads, c.f (7.24),

Γ
p4q � �igµε � 3ig2µε

16π2ε
� ig2µε

32π2

�
3γ � F ps,m0, µq � F pt,m0, µq � F pu,m0, µq

	
, (8.27)

where contribution at order g4 comes from three graphs on figure (8.4).

Renormalization at one loop

At tree level and one loop, up to terms vanishing in the limit εÑ 0, we have found for the two- and
four-point vertex functions the following result

Γ
p2qppq � p2 �m2

0

�
1� g

16π2ε
� g

16π2

�
� 1� γ � log

�4π2µ2

m2
0

		�
,

Γ
p4qppiq � �ig0 � 3ig2

0µ
�ε

16π2ε
� ig2

0µ
�ε

32π2
r3γ � F ps,m0, µq � F pt,m0, µq � F pu,m0, µqs .

The vertex functions above depend on the bare quantities m2
0 and g0, and on the additional mass

parameter µ of dimensional regularization. They exhibit pole-type singularities in the limit εÑ 0.

We suppose that at one loop the bare parameters pg0,m
2
0q are expressed via renormalized pa-

rameters pg,m2q as

m2
0 � m2

�
�1�

8̧

k�1

Mk

�
g, m

2

µ2

	
εk

�
� m2Zm (8.28)

g0 � gµε

�
�1�

8̧

k�1

Gk
�
g, m

2

µ2

	
εk

�
� gµεZg . (8.29)

The functions Zm and Zg are dimensionless. In perturbation theory all Z’s are series in renormalized
dimensionless charge g starting from unity and having poles in ε.

3Mass dimensions of the graphs we computed is the same as of the corresponding vertex function

Γ̄pnqpp1, p2, . . . , pn�1q � Γpnqpp1, p2, . . . , pnqδpp1 � . . . pnq. For generic n it is d� n
�

1� d
2

	
� 4� n�

�
n
2
� 1

	
ε.
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Let us show how the procedure of renormalization works. We start from Γ
p2qppq and substitute

their m2
0. Since Γ

p2qppq is of the first order in g and has a pole in ε, considering renormalization at
one loop, it is enough to restrict ourselves to

m2
0 � m2

�
1� M1g

ε

	
. (8.30)

Concerning g, we do not need to do anything here, since the two-point function already depends on
the renormalized coupling g. We then have

Γ
p2qppq � p2 �m2

�
1� M1g

ε

	�
1� g

16π2ε
� g

16π2

�
�1� γ � log

� 4π2µ2

m2
�
1� M1g

ε

�	
��

.

According to the ideology of dimensional regularization, we have to expand this expression in g
keeping ε finite up to the order g, as the computation of the corresponding vertex function has been
done up to this order. In particular, in the term containing the logarithm it is enough just to take
the leading order m2, as the sub-leading term will produce the contribution of order g and higher.
Thus, making this expansion we get

Γ
p2qppq � p2 �m2

�
1� M1g

ε
� g

16π2ε
� g

16π2

�
�1� γ � log

�4π2µ2

m2

	
�
.

Finally, picking up M1 � 1
16π2 we cancel 1{ε terms and get the finite vertex function in the limit

ε Ñ 0 at one loop. Such a renormalization scheme where Z-functions (8.28) and (8.29) start from
identity and they are designed just to cancel poles in ε is called minimal subtraction scheme4. In
what follows we confine ourselves to minimal subtractions. Thus, renormalization of mass at one
loop in the minimal subtraction scheme is

m2
0 � m2

�
1�

1
16π2 g

ε



. (8.31)

Let us turn our attention to the four-vertex function. Here we should substitute in the four-vertex
function

g0 � gµε
�

1� G1g

ε




and expand the result up to the order g2 (again keeping ε finite), which is the order the vertex
function was computed. Concerning m0, it is obviously enough to substitute just the leading order
m0 � m. We find

Γ
p4qppiq � �igµε

�
1� G1g

ε



� 3ig2µε

16π2ε
� ig2µε

32π2
r3γ � F ps,m, µq � F pt,m, µq � F pu,m, µqs .

Now by choosing G1 � 3
16π2 we cancel the ε-pole and get the finite four-point vertex function in

the limit ε Ñ 0. Thus, at one loop in the minimal subtraction scheme the coupling constant is
renormalized as

g0 � gµε
�

1�
3

16π2 g

ε



. (8.32)

Starting from two loops, it appears that renormalization of the vertex functions cannot be achieved
through renormalization of charge and mass only but one has to also invoke renormalization of the

4The minimal subtraction scheme was proposed in ’t Hooft, Nucl. Phys. B61, 455 (1973).
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normalization of the field strength from its bare value φ0 as φ0 � Z
1{2
φ φ, where Zφ has the similar

structure to eqs.(8.28) and (8.29)

Zφ � 1�
8̧

k�1

Zk

�
g, m

2

µ2

	
εk

. (8.33)

Here Z1 starts from the order g2. Renormalization of an arbitrary vertex function is achieved by
multiplying it with a proper power of Zφ:

Γ
pnq
r ppi, g,m, µ; εq � Z

n{2
φ Γ

pnqppi, g0,m0; εq .

Here on the right hand side we have a bare vertex function Γ
pnq

which depends on bare parameters

g0, m0. On the right hand side we have a renormalized vertex function Γ
pnq
r . Both vertex functions,

on the left and on the right, also depend on ε. Renormalized vertex functions at any order of
perturbation theory in g remain finite upon taking the limit ε Ñ 0. All infinities are soaked in a
proper dependence of the bare parameters on ε.

One of the extremely pleasant features of the minimal subtraction scheme is that Zm, Zg and Zφ
are actually independent on the parameter m

µ , that is they have the form

m2
0 � m2

�
1�

8̧

k�1

Mkpgq
εk

�
� m2Zm ,

g0 � gµε

�
1�

8̧

k�1

Gkpgq
εk

�
� gµεZg , (8.34)

Zφ � 1�
8̧

k�1

Zkpgq
εk

.

We will not give here the proof of this statement, but mention that it relies on a statement that
divergent terms are µ-independent and the whole µ-dependence occurs in the finite parts of Green’s
functions only.

Summary and relation to the approach based on counterterms

Renormalization is a procedure of canceling the divergences by adjusting the parameters in the
action. For φ4 theory we consider the bare Lagrangian in dimension d � 4� ε

L � 1

2
Bµφ0Bµφ0 � m2

0

2
φ2

0 �
g0

4!
φ4

0 .

The subscript zero indicates bare quantities. Green’s functions and vertex functions obtained from
this Lagrangian, for instance,

Γ
pnqppi, g0,m0; εq

are finite for finite ε but diverge as εÑ 0 at any given loop order.

We further rescale the field by writing φ0 � Z
1{2
φ φ, where Z is a multiplicative parameter with

zero canonical dimension called the wave function renormalization. In terms of the ‘renormalized
field’ φ, the Lagrangian is

L � 1

2
ZφBµφBµφ� Zφm

2
0

2
φ2 � g0Z

2
φ

4!
φ4 . (8.35)
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The Green’s functions of the quantum field are now obtained by using this Lagrangian in the
functional integral. We let Z, m0, and g0 be functions of the dimensional regularization parameter
ε, and we choose these functions (if possible) so that the Green’s and vertex functions of φ are finite
as εÑ 0. If this can be done, then we have succeeded in constructing a continuum field theory, and
it is termed ’renormalizable’. We will call m0 the bare mass, and g0 the bare coupling, and we will
call Z the wave-function, or field-strength, renormalization. In the renormalization procedure the
dependence on an arbitrary mass parameter µ enters due to dimensional reasons.

An alternative way of viewing the renormalization is to write the Lagrangian as

L � 1

2
BµφBµφ� m2

2
φ2 � gµ4�d

4!
φ4 �

� 1

2
δZBµφBµφ� δm2

2
φ2 � δgµ4�d

4!
φ4 . (8.36)

We will call the first three terms the basic Lagrangian and the last three the counterterm Lagrangian.
The renormalized mass m and the renormalized coupling g are finite physical quantities held fixed
as ε Ñ 0. The fact that the basic Lagrangian does not lead to finite Green’s functions means that
it is incomplete. The counterterms are then adjusted to cancel the divergences as ε Ñ 0. This

form of the Lagrangian is useful in doing perturbation theory; we treat 1
2BµφBµφ � m2

2 φ
2 as the

free Lagrangian and the remainder as interaction. The expansion is in powers of the renormalized
coupling g. The counterterms are expanded in infinite series, each term cancelling the divergences
of one specific graph. The form (8.36) also exhibits the fact that the theory has two independent
parameters, m and g. The counterterms are functions of m, g, and of ε.

The basic ideas of renormalization procedure are

1) The self-interactions of the field create, among other things, dynamical contributions to the
mass of the particle, to the potential between particles, and to the coupling of the field to the
single particle state. Thus the measured values of these parameters are renormalized relative
to the values appearing in the Lagrangian.

2) These contributions, or renormalizations, are infinite, in many cases. The most important
theorem of renormalization theory is that they are the only infinities, in the class of theories
called ’renormalizable’.

3) The infinities are cancelled by wave-function, mass, and coupling counterterms, so that the
net effect of the interactions is finite.

4) To make quantitative the sizes of the infinities, the theory is regularized, for instance, by the
method of dimensional regularization. The infinities appear as divergences when the regular-
ization parameter tends to zero.

8.3 Introduction into renormalization group

As we have seen in the previous section, the renormalized and unrenormalized, i.e. bare, vertex
functions are related as

Γ
pnq
r ppi, g,m, µ; εq � Z

n{2
φ Γ

pnqppi, g0,m0; εq , (8.37)

Γ
pnqppi, g0,m0; εq � Z

�n{2
φ Γ

pnq
r ppi, g,m, µ; εq . (8.38)

Here we keep ε finite and recall that g0 and m0 are the bare coupling constant and mass, while m
and g are their renormalized counterparts. Parameter Zφ is the wave function renormalization. In
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these equations we can either regard the bare parameters as functions of the renormalized ones or
take the bare parameters as independent variables; in the latter case the renormalized parameters
are functions of the bare ones.

It is important to realize that all the bare quantities, vertex functions in particular, do not depend
on the mass parameter µ and therefore they are invariant under rescaling

µÑ esµ , s P R .

These rescaling form a group known as the renormalization group. Why this is the case is clear
from the computation procedure – the bare Green’s and vertex functions are obtained from the bare
Lagrangian and therefore they must depend on bare parameters only; as such they do not involve
µ. Indeed, look for instance at the formulae (8.5) and (8.19) for the two- and four-vertex functions
at one loop.

Remarkably, equation (8.38) shows that while its left hand side is independent on µ, the right
hand side exhibits both an explicit and implicit dependence (through g and m) on µ. Therefore,
acting on a bare vertex function with the dimensionless operator µ d

dµ , we must have

0 � µ
d

dµ
Γ
pnqppi, g0,m0; εq � µ

d

dµ

�
Z�n{2 Γ

pnq
r ppi, g,m, µ; εq

�
, (8.39)

which leads to the following differential equation for the renormalized vertex function�
µ
B
Bµ � µ

Bg
Bµ

B
Bg � µ

Bm
Bµ

B
Bm � n

2
µ
B lnZφ
Bµ

�
Γ
pnq
r ppi, g,m, µ; εq � 0 . (8.40)

Define the following dimensionless quantities

β
�
g,
m

µ
, ε
	

� µ
Bg
Bµ ,

γm

�
g,
m

µ
, ε
	

� µ

m

Bm
Bµ ,

γφ

�
g,
m

µ
, ε
	

� µ
B lnZφ
Bµ .

The equation (8.40) takes the form�
µ
B
Bµ � β

B
Bg � γm

B
Bm � n

2
γφ

�
Γ
pnq
r ppi, g,m, µ; εq � 0 . (8.41)

This is a renormalization group equation. It expresses the invariance of Γ
pnq
r ppi, g,m, µ; εq under a

change of the mass parameter µ.

It is inconvenient to have in this equation the partial derivative µ B
Bµ . The latter can be excluded

by the following argument. The vertex function Γ
pnq
r must have the same engineering dimension as

its bare counterpart, which is

D � d� n
�

1� d

2

	
� 4� n� ε

�n
2
� 1
	
.

It means that under the simultaneous rescaling

pi Ñ tpi , mÑ tm , µÑ tµ

a vertex function scales as (g is dimensionless!)

Γ
pnq
r ptpi, g, tm, tµ; εq � tDΓ

pnq
r ppi, g,m, µ; εq . (8.42)
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This equation can be rewritten as

Γ
pnq
r ptpi, g,m, µ; εq � tDΓ

pnq
r

�
pi, g,

m

t
,
µ

t
; ε
	

(8.43)

which implies in turn the following differential equation�
µ
B
Bµ �m

B
Bm � t

B
Bt �D

�
Γ
pnq
r ptpi, g,m, µ; εq � 0 . (8.44)

Equation (8.44) can be derived from (8.43) as follows. Applying to (8.43) an operator t BBt one gets

t
B
BtΓ

pnq
r ptpi, g,m, µ; εq � DtDΓ

pnq
r

�
pi, g,

m

t
,
µ

t
; ε
	
� tD t

B
BtΓ

pnq
r

�
pi, g,

m

t
,
µ

t
; ε
	
. (8.45)

Further, one has

t
BΓ

pnq
r

�
pi, g,

m
t
, µ
t

; ε
	

Bt �
BΓ

pnq
r

�
pi, g,m,

µ
t

; ε
	

Bm
���
mÑm

t

�
� m

t

	
�
BΓ

pnq
r

�
pi, g,

m
t
, µ; ε

	
Bµ

���
µÑµ

t

�
� µ

t

	
.

On the other hand,

m
BΓ

pnq
r

�
pi, g,

m
t
, µ
t

; ε
	

Bm � m
BΓ

pnq
r

�
pi, g,m,

µ
t

; ε
	

Bm
���
mÑm

t

�1

t

	
,

µ
BΓ

pnq
r

�
pi, g,

m
t
, µ
t

; ε
	

Bµ � µ
BΓ

pnq
r

�
pi, g,

m
t
, µ; ε

	
Bµ

���
µÑµ

t

�1

t

	
so that

t
BΓ

pnq
r

�
pi, g,

m
t
, µ
t

; ε
	

Bt � �
�
m

B
Bm � µ

B
Bµ



Γ
pnq
r

�
pi, g,

m

t
,
µ

t
; ε
	
. (8.46)

Plugging this identity into (8.45) gives precisely eq.(8.44).

Since in eq.(8.41) the differential operator does not depend on pi, it is valid for tpi as well, and,
therefore, excluding from (8.41) and (8.44) the operator µ B

Bµ , we find�
�t BBt � β

B
Bg � pγm � 1qm B

Bm �D � n

2
γφ

�
Γ
pnq
r ptpi, g,m, µ; εq � 0 . (8.47)

This equation admits a smooth limit εÑ 0 in which D reduces to D � 4� n. Mathematically, this

equation expresses directly the effect on Γ
pnq
r of scaling up momenta by a factor of t. Note that if

β � γm � γφ � 0, the effect is simply given by the canonical dimension D, as it would be expected
from from a naive scaling argument. Because of interactions one has to apply renormalization which
leads to non-trivial β, γm, γφ and, therefore, to a departure from the naive scaling behavior of Green’s
functions. It is worth emphasizing that even if we would start with a massless theory, in which case
the corresponding Lagrangian is scale invariant, we would find that Green’s functions are not scale
invariant because of non-vanishing β and γφ. In other words, renormalization introduces a scale in
the form of a mass µ in dimensional regularization; typically a classical scale invariant theory leads
to a quantum theory where scale invariance is broken.

Let us now explain how one can solve eq.(8.47) in the minimal subtraction scheme where the
quantities β, γm and γφ do not depend on the parameter m{µ, cf. the discussion around eq.(8.34).
The equation (8.47) then reads�

�t BBt � βpgq BBg � pγmpgq � 1qm B
Bm �D � n

2
γφpgq

�
Γ
pnq
r ptpi, g,m, µq � 0 . (8.48)

Let us make the chance of variables tÑ 1{t under which t BBt Ñ �t BBt , and further divide the resulting
equation by t. We get� B

Bt �
βpgq
t

B
Bg �

pγmpgq � 1q
t

m
B
Bm � D � n

2 γφpgq
t

�
Γ
pnq
r pt�1pi, g,m, µq � 0 . (8.49)
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This is a partial differential equation of the first order for a function of three variables

F pt, g,mq � Γ
pnq
r pt�1pi, g,m, µq .

Such an equation is solved by the method of characteristics. One assumes a parametric dependence
of t, g,m on a parameter s such that

dt

ds
� 1 ,

dg

ds
� βpgq

t
,

dm

ds
� pγmpgq � 1qm

t
. (8.50)

The first differential equation implies t � s, so that the last two equations take the form

dg

dt
� βpgptqq

t
, (8.51)

dm

dt
� pγmpgptqq � 1qm

t
(8.52)

Equation (8.49) takes the form� B
Bt �

dg

dt

B
Bg �

dm

dt

B
Bm

�
F pt, g,mq � �D � n

2 γφpgq
t

F pt, g,mq (8.53)

and, therefore, reduces to an ordinary differential equation

dF

dt
� �D � n

2 γφpgq
t

F . (8.54)

Performing integration we obtain

F ptq � Ce�
³t
1

D�n
2
γφpgpτqq

τ dτ � C t�De
n
2

³t
1

γφpgpτqq

τ dτ ,

where C � F p1q is an integration constant. Thus5,

Γ
pnq
r pt�1pi, gptq,mptq, µq � Γ

pnq
r ppi, g,m, µq t�Den2

³t
1

γφpgpτqq

τ dτ

or rescaling pi Ñ tpi,

Γ
pnq
r ptpi, g,m, µq � tD exp

�
�n

2

» t
1

γφpgpτqq
τ

dτ

�
Γ
pnq
r ppi, gptq,mptq, µq .

This is an explicit solution solution of the renormalization group equation in terms of ‘running’
coupling constant gptq and ‘running mass’ mptq. Indeed, under a change of scale of external momenta
Green’s functions scale in a rather non-trivial way: g and m run and besides their engineering
dimension D they develop an anomalous overall scaling represented by the exponential term. The
solution is controlled by eqs.(8.51) and (8.52), which we rewrite as

t
dg

dt
� βpgptqq , gp1q � g . (8.55)

t
d logm

dt
� γmpgptqq � 1 , mp1q � m. (8.56)

The function βpgq in the first of these equations is called ‘beta-function’. Both βpgq and γmpgq
can be computed in perturbation theory, again departing from the fact that bare quantities should
not depend on µ. For instance, at one loop we found the following result

g0 � gµε
�

1�
3

16π2 g

ε



. (8.57)

5Here the initial conditions are gp1q � g and mp1q � m.
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Figure 8.5: Possible form of the β function. Here g� is an ultraviolet stable fixed point and g � 0
is an infrared stable fixed point. An IR fixed point corresponds to β1pg�q ¡ 0, while a UV one to
β1pg�q   0.

Since g0 is µ-independent, we must have

0 � µ
dg0

dµ
� µ

dg

dµ
µε
�

1�
3

16π2 g

ε



� εgµε

�
1�

3
16π2 g

ε



� 3g

16π2ε
µεµ

dg

dµ

that gives

µ
dg

dµ
� �εg � 3g2

16π2

1� 6g
16π2ε

.

We now expand the right hand side of this expression in g (keeping ε finite!) up to the order g2

µ
dg

dµ
� �εg � 3g2

16π2
�Opg3q (8.58)

After this is done we can take the limit εÑ 0, obtaining

µ
dg

dµ
� 3g2

16π2
�Opg3q ùñ βpgq � 3g2

16π2
¡ 0 . (8.59)

This equation for the running coupling can be rewritten in the form

d
�1

g

	
� � 3

16π2
d lnµ

and then integrated to give an expression

1

g
� 1

gs
� � 3

16π2
ln

µ

µs

from which we finally find the running coupling

gpµq � gs

1� 3gs
16π2 ln µ

µs

, (8.60)

where µ{µs � t and an integration constant is chosen such that gp1q � gs.
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Figure 8.6: Another possible form of the β function. Here g� is an infrared stable fixed point, while
g � 0 is an ultraviolet stable fixed one.

As is clear from (8.60), gpµq increases with µ. Indeed, if we start from some small gs    1 at
a given scale µs, then the effective coupling will increase with increasing µ. Thus, we will have to
deal with larger and larger g so that eventually we will leave the domain of validity of perturbation
theory: g    1 or, more exactly, 3gs

16π2 ln µ
µs

   1. At shorter distances, we have to take into

account more and more terms on the right hand side of eq.(8.59). This discussion shows that
perturbation theory becomes more reliable at large distances (small momenta), that is, in the long
range properties of the interaction, and it can be trusted in defining asymptotic states. Note that
should the sign of the right hand side of (8.59) be negative6, then perturbation theory would fail for
defining the asymptotic states but would work great for short distance behavior. This is precisely
the situation which takes place in Quantum Chromodynamics (QCD) – the theory which describes
interactions between quarks. Asymptotic states of quarks, like protons, cannot be described by
means of perturbation theory. Going to large distances makes interactions between quarks very
strong and therefore impossible to describe in the framework of perturbation theory.

β-function scenarios

One can speculate about possible behavior of g outside the domain of perturbation theory. If for
some reason even for large µ the running coupling is given by (8.60), then it will blow up at a scale

µ � µse
16π2

3gs (8.61)

which is rather large if gs is small. This is called Landau pole after Landau recognized the same
behavior in QED. Of course, there is no reason to believe that the one-loop contribution to βpgq is
valid for large g.

We do not know how to compute βpgq for large g, but we can imagine the following hypothetical
behavior of the β-function:

1) For large g the β-function remains positive; with g increasing the beta-function follows a
concave or convex curve depending on the sign of β1pgq. If βpgq blows up for some value of g,
g itself is infinite there (Landau pole).

2) βpgq behaves as in figure 8.5. We assume that it crosses the g-axis at g�:

βpg�q � 0 .

6Notice that this is the case when ε is kept finite, see formula (8.58).
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The point g� is called the fixed point, because if for some reason the coupling was originally
at g� it would stay there

µ
dg

dµ

���
g�
� βpg�q � 0 .

The behavior of g near g� can be analyzed by expanding β around g�

µ
dg

dµ
� pg � g�qβ1pg�q � . . . (8.62)

We see that the sign of β1pg�q is crucial. If β1pg�q   0, then dg
dµ ¡ 0 for g just below g�, that

drives g to a large value, that is, towards the fixed point g�. For g above g�, dg
dµ   0 driving

g to smaller values, that is to g�. This means that g is driven to g� as µ increases: such a
fixed point is called untraviolet stable, because g will approach the value g� asymptotically as
µ Ñ 8, from above or from below depending on the starting point gs, which can be either
above or below g�.

3) βpgq starts out negative for small g, decreasing its value monotonically. This means that g
decreases monotonically with lnµ. In this case the perturbative approximation becomes better
and better at short distances, and g is driven to zero which in this instance is an ultraviolet
stable fixed point. Such coupling constant behavior for low g is exhibit by non-abelian gauge
theories – a phenomenon known as asymptotic freedom.

4) βpgq behaves as in figure 8.6. In this case β1pg�q ¡ 0 and g� is an infrared point. This means
that if at µs, gs   g�, g will be driven towards zero, but if g ¡ g� it will be driven away from
g� for large values of g.
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Chapter 9

Appendices

9.1 Method of stationary phase

Consider an integral of the Fourier type

F pλq �
» b
a

fpxqeiλSpxqdx .

Here ra, bs is a finite interval of R. The function Spxq takes only real values and λ is a large positive
number. The function Spxq is called a phase function or simply a phase. We are interested to find
an asymptotic behavior of this integral in the limit λÑ �0.

Typical example of the integral above is the Fourier transform

F pλq �
» b
a

fpxqeiλxdx (9.1)

If fpxq is continuous on ra, bs, then F pλq Ñ 0 when λ Ñ �8. Indeed, Repfpxqeiλxq strongly
oscillates for large λ and two neighboring half-waves encompass almost the same but opposite in
sign areas. Sum of these areas is small and, as a result, the whole integral is small, c.f. figure 9.1. The
most general result about asymptotic behavior of such integrals constitute the Riemann-Lebesgue

theorem: Let integral
³b
a
|fpxq|dx converges. Then» b

a

fpxqeiλxdx Ñ 0 , λÑ �8 .

The Riemann-Lebesgue theorem contains no information on how fast this integral converges to zero;
this depends on differential properties of fpxq and can be actually very slow. Asymptotic expansions
of F pλq are possible to obtain only for sufficiently smooth fpxq and Spxq. In the following we assume
that these two functions are infinite-differentiable.

Let fpxq and Spxq are infinite-differentiable and let S1pxq � 0 on ra, bs. Then F pλq has the
following asymptotic expansion as λÑ �8

F pλq � eiλSpbq

iλ

8̧

n�0

bn
piλqn �

eiλSpaq

iλ

8̧

n�0

an
piλqn , (9.2)

where

an � p�1qnMn
� fpxq
S1pxq

	
|x�a , bn � p�1qnMn

� fpxq
S1pxq

	
|x�b , M � 1

S1pxq
d

dx
. (9.3)
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Figure 9.1: An illustation to the Riemann-Lebesgue theorem. On the left figure the function
x2 cosp10xq is plotted in the interval r0, 10s. On the right figure one has the graph of x2 cosp40xq on
the same interval.

This asymptotic expansion easily follows by integrating by parts eiλSpxq � 1
iλS1pxq

d
dxe

iλSpxq and by

using the Riemann-Lebesgue theorem. Note that F pλq expands into an asymptotic series in 1{λ.

As an example consider the integral

Φpxq �
» 8
x

eit
2

dt

and compute its asymptotics as xÑ �8. By parts,

Φpxq �
» 8
x

1

2it
dpeit2qdt � �e

�x2

2ix
� 1

2i

» 8
x

eit
2 dt

t2
�

� ie�x
2

2x
�
» 8
x

1

4t3
dpeit2q � ie�x

2

2x
� eix

2

4x3
� 3

4

» 8
x

eit
2 dt

t4
.

Thus,

Φpxq � eix
2
� i

2x
� 1

4x3

	
�O

� 1

x5

	
.

Contribution of a non-degenerate stationary point.

In the previous considerations we assumed that S1pxq � 0 on ra, bs, i.e. Spxq has no stationary points
on this interval. If there exists stationary points of the phase, then the asymptotic expansion of the
integral F pλq changes its form dramatically. For instance S � x2 has a stationary point x � 0. Close
to this point on the interval of order 1{?λ the function cospλx2q does not oscillate, while the sum
of remaining areas of cosine has the order Op1{λq which is essentially smaller. In what follows we
consider the most interesting case for our applications where ra, bs is replaced by an infinite interval.

To proceed we expand the integrand around a stationary point

F pλq �
» 8
�8

fpxqeiλxdx � fpx0qeiλSpx0q
» �8
�8

e
iλ
2 S

2px0qpx�x0q2�...dx �

� fpx0qeiλSpx0q
» �8
�8

e
i
2 sgnpS2px0qqλ|S2px0q|px�x0q2dx .

We split the last integral into two and make a choice of variables t �aλ|S2px0q|px� x0q. That is

F pλq � fpx0qeiλSpx0q
� » x0

�8
e
i
2 sgnpS2px0qqλ|S2px0q|px�x0q2dx�

» 8
x0

e
i
2 sgnpS2px0qqλ|S2px0q|px�x0q2dx

�
,
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giving

F pλq � fpx0qeiλSpx0qa
λ|S2px0q|

� » 0

�8
e
i
2 sgnpS2px0qqt2dt�

» 8
0

e
i
2 sgnpS2px0qqt2dt

�
�

� 2
fpx0qeiλSpx0qa
λ|S2px0q|

» 8
0

e
i
2 sgnpS2px0qqt2dt .

The last integral here is the complete Fresnel integral and it is given by
a

π
2 e

iπ
4 sgnpS2px0qq. Thus,

the leading term in the asymptotic expansion of F pλq is

F pλq � fpx0qeiλSpx0q
d

2π

λ|S2px0q|e
iπ
4 sgnpS2px0qq �O

� 1

λ

	
. (9.4)

Most importantly, as we see, the presence of the critical point leads to the asymptotic expansion
which starts from 1{?λ.

9.2 Path integral for harmonic oscillator

Consider a one-dimensional harmonic oscillator with the Hamiltonian

H � p2

2m
� mω2

2
q2 .

Equations of motion
:q � ω2q � 0

so that a general solution is
qptq � A sinωt�B cosωt .

the period of oscillation is T � 2π
ω . We have then a system of equations

q1 � A sinωt1 �B cosωt1 ,

q2 � A sinωt2 �B cosωt2 . (9.5)

Solving it allows to find A and B and establish a path through q1 and q2:

qptq � 1

sinωpt2 � t1q
�
� q1 sinpωpt� t2qq � q2 sinpωpt� t1qq

�
.

This is a unique well-defined path provided t1 � t2 � n� T {2, n P Z. The classical action is

Scl � mω

2 sinωpt1 � t2q
�
pq2

1 � q2
2q cosωpt1 � t2q � 2q1q2

�
.

The path integral reduces

W pq2, t2; q1, t1q � fpt2 � t1qe i~Scl ,

where for f one has a path integral representation

f �
»
Dq exp

� im
2~

» t2
t1

p 9q2 � ω2q2qdt
�
,

where now qpt1q � 0 � qpt2q. Expand

qptq �
c

2

t2 � t1

8̧

k�1

ak sinπk
t� t1
t2 � t1

112



The functions
b

2
t2�t1 sinπk t�t1

t2�t1 form a complete orthonormal basis on the interval rt1, t2s in the

space of square-integrable functions with the boundary conditions qpt1q � 0 � qpt2q.
We come to the integration over the Fourier coefficients (Jacobian is unessential).

f � lim
nÑ8

» 8
�8

. . .

» 8
�8

exp
� ņ

k�1

im

2~
λka

2
k

�
da1 . . . dan .

Here

λk �
� kπ

t2 � t1

	2

� ω2 .

Now we have to use the Fresnel integral formula» 8
�8

eiλx
2

dx �
c

π

|λ|e
iπ
4 signλ . (9.6)

Euler formula 8¹
k�1

���1� x2

k2π2

��� � | sinx|
x

, x ¡ 0

The correct formula

W pq2, t2; q1, t1q �
� mω

2π~| sinωpt2 � t1q|
	1{2

e�
iπ
4 e

mω
2 sinωpt1�t2q

�
pq21�q22q cosωpt1�t2q�2q1q2

�
e�

iπ
2
Nloomoon

Maslov cor.

. (9.7)

valid for
n
π

ω
  t2 � t1   pn� 1qπ

ω
.

113


	Introduction
	Classical fields and symmetries
	Continuous systems in classical mechanics
	Noether's theorem

	Klein-Gordon field
	Classical Klein-Gordon field
	Canonical quantization and Fock space
	Commutation and Green's functions
	Wick's theorem – operatorial approach
	Appendices
	Fock space formalism in quantum mechanics
	Relevan formulae involving Bessel functions


	Dirac field
	Introducing the Dirac equation
	The Dirac equation and Lorentz transformations
	On various representations of the Dirac equation
	Solution of the Dirac equation
	Charge conjugation and anti-particles
	Quantization
	The Dirac propagator

	Electromagnetic field
	Classical electromagnetic field
	Gauge symmetry
	Hamiltonian formulation of electrodynamics
	Quantization in the Coulomb gauge
	Spin of a photon

	Path integral in quantum mechanics
	Gaussian Integrals
	Path integral in quantum mechanics
	Classical limit

	Functional methods in QFT
	Generating functional of Green's functions
	Generating functional for interacting fields
	Generating functional for connected diagrams
	Connected diagrams in the momentum space
	Self-energy and vertex function
	Functional methods for fermions

	Renormalization
	Superficial degree of divergence
	Dimensional regularization
	Introduction into renormalization group

	Appendices
	Method of stationary phase
	Path integral for harmonic oscillator


